

Industri<mark>al</mark> Au<mark>tomation</mark>

BL67 -

USER MANUAL FOR CANopen

All brand and product names are trademarks or registered trade marks of the owner concerned.

V1.1, version 08/06 © Hans Turck GmbH, Mülheim an der Ruhr

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Hans Turck GmbH & Co. KG, Mülheim an der Ruhr.

Subject to alterations without notice.

Before starting the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighboring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50 110-1/-2 (VDE 0 105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalization. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference do not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60 364-4-41 (VDE 0 100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60 204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.

TURCK

- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- All work relating to transport, installation, commissioning and maintenance must only be carried out by qualified personnel. (IEC 60 364 and HD 384 and national work safety regulations).
- All shrouds and doors must be kept closed during operation.

Table of Contents

	About	this	Manu	Jal
--	-------	------	------	-----

Documentation Concept	0-2
General Information.	0-3
Prescribed Use	0-3
Notes Concerning Planning /Installation of this Product	0-3
Description of Symbols Used	0-4

1 BL67 - Philosophy

The Basic Concept	1-2
Flexibility	
Convenient Handling	
BL67 Components	1-4
Gateways	
Electronic Modules	1-5
Base Modules	1-6
End Plate	1-7

2 Short description of CANopen

CANopen	
General	
Communication	
BL67 and CANopen	2-7
Electronic data sheet - EDS file	

3 BL67 - Gateway for CANopen

Introduction	
Function	
Technical Information	
Structure Diagram Power supply concept	
Technical Data	
Connection Options	
Fieldbus Connections	
Fieldbus Termination	
Power Supply via 7/8''	
Service Interface Connection	

Setting the Bit Transfer Rate	3-13
Node-ID Setting	3-15
Acceptance of the BL67 Station Configuration	3-17
Status Indicators/ Diagnostic Messages Gateway	
Diagnostic Messages via LEDs	3-18

4 BL67 - Communication in CANopen

Setting up communication Minimum Boot-up Identifier for the Standard Objects Set up Node Guarding Protocol Boot-up Message	4-5 4-9 4-12
Parameterization through Service Data Objects (SDO) Read (Read from Object Dictionary) Write (Write to Object Dictionary) Commanded Parameter Storing/Restoring	4-16 4-17
Transmission of Process Data Objects (PDO) Communication Parameter COB-ID Transmission Type Inhibit Time Event Timer Available PDOs Mapping Objects in PDOs Default-PDOs and PDO-Mappings BL67-Specific Default-PDOs Mappable Objects Procedure for Altering PDO-Mappings	4-21 4-22 4-23 4-23 4-23 4-24 4-24 4-24 4-25 4-27 4-27 4-31
Object Dictionary Overview of all Objects Commands for "Parameter Save" and "Restore Defaults" Objects for the Communication Profile Objects for the Transfer of Service Data Objects for the Transfer of Process Output Data Objects for the Transfer of Process Input data Objects for Network Management Manufacturer Specific Objects	4-34 4-39 4-41 4-71 4-73 4-82 4-91
I/O-Module Objects Overview of the I/O-Module Objects General I/O-Objects Objects for Digital Input Modules	4-109 4-112

Objects for Digital Output Modules	4-121
Objects for Digital Combi Modules	
Objects for Analog Input Modules	
Objects for Analog Output Modules	
Objects for RS232/485-Modules	
Objects for SSI-Modules	4-178

5 Diagnostics - Emergency Frames

General	5-2
Structure of the Emergency Frames Error Register	
Gateway-Diagnostics	5-5
I/O-Module Diagnostics Digital Input Modules	
Digital Output Modules	
Digital Combi Modules	5-11
Analog Output Modules	
Technology Modules	5-18

6 Guidelines for Station Planning

Module Arrangement	6-2
Random Module Arrangement	
Complete Planning	6-3
Maximum System Extension	6-4
Creating Potential Groups	6-5
Plugging and Pulling Electronic Modules	6-6
Extending an Existing Station	6-7
Firmware Download	6-8

7 Guidelines for Electrical Installation

General Notes	7-2
General	7-2
Cable Routing	7-2
Cable Routing Inside and Outside of Cabinets:	
Lightning Protection	7-3
Transmission Cables	
Cable Types	7-4
Potential Relationships	7-5

7-5
7-9
7-11 7-12 7-12

8 Glossary

9 Index

About this Manual

Documentation Concept	
General Information	3
Prescribed Use	3
Notes Concerning Planning /Installation of this Product	3
Description of Symbols Used	4

Documentation Concept

This manual contains all information about the BL67-gateway for CANopen.

The following chapters contain a short BL67 system description, a description of the field bus system CANopen, exact information about function and structure of the BL67 CANopen-gateway as well as all bus-specific information concerning the connection to automation devices, the maximum system extension etc.

The bus-independent I/O-modules for BL67 as well as all further fieldbus-independent chapters like mounting, labelling etc. are described in a separate manual.

 BL67 I/O-modules (TURCK-Documentation-No.: German D300572/ English D300529)

Furthermore, the manual mentioned above contains a short description of the project planning and diagnostics software for TURCK I/O-systems, the software I/O-ASSISTANT.

General Information.

Attention

Please read this section carefully. Safety aspects cannot be left to chance when dealing with electrical equipment.

Prescribed Use

Warning

The devices described in this manual must be used only in applications prescribed in this manual or in the respective technical descriptions, and only with certified components and devices from third party manufacturers.

Appropriate transport, storage, deployment and mounting as well as careful operating and thorough maintenance guarantee the troublefree and safe operation of these devices.

Notes Concerning Planning /Installation of this Product

Warning

All respective safety measures and accident protection guidelines must be considered carefully and without exception.

Description of Symbols Used

Warning

This sign can be found next to all notes that indicate a source of hazards. This can refer to danger to personnel or damage to the system (hardware and software) and to the facility.

This sign means for the operator: work with extreme caution.

Attention

This sign can be found next to all notes that indicate a potential hazard.

This can refer to possible danger to personnel and damages to the system (hardware and software) and to the facility.

Note

This sign can be found next to all general notes that supply important information about one or more operating steps. These specific notes are intended to make operation easier and avoid unnecessary work due to incorrect operation.

1 BL67 - Philosophy

The Basic Concept	
Flexibility Convenient Handling	3
BL67 Components	4
Gateways	4
Electronic Modules	5
- Power Feeding Modules	5
Base Modules	
End Plate	7

The Basic Concept

BL67 is a modular IP67 I/O system for use in industrial automation. It connects the sensors and actuators in the field to the higher-level controller.

BL67 offers modules for practically all applications:

- Digital input and output modules
- Analog input and output modules
- Technology modules (RS232 interface,...)

A complete BL67 station counts as **one** station on the bus and therefore occupies **one** fieldbus address in any given fieldbus structure. A BL67 station consists of a gateway, power distribution modules and I/O modules.

The connection to the relevant fieldbus is made via the bus-specific gateway, which is responsible for the communication between the BL67 station and the other fieldbus stations.

The communication within the BL67 station between the gateway and the individual BL67 modules is regulated via an internal module bus.

Note

The gateway is the only fieldbus-dependent module on a BL67 station. All other BL67 modules are not dependent on the fieldbus used.

1

Flexibility

A BL67 station can contain modules in any combination, which means it is possible to adapt the system to practically all applications in automated industry.

Convenient Handling

All BL67 modules, with the exception of the gateway, consist of a base module and an electronic module.

The gateway and the base modules are snapped onto a mounting rail or are directly mounted onto a mounting plate. The electronic modules are plugged onto the appropriate base modules.

After disconnection of the load, the electronic modules can be plugged or pulled when the station is being commissioned or for maintenance purposes, without having to disconnect the field wiring from the base modules.

BL67 - Philosophy

BL67 Components

Gateways

The gateway connects the fieldbus to the I/O modules. It is responsible for handling the entire process data and generates diagnostic information for the higher-level master and the software tool I/O-ASSISTANT.

Figure 2: BL67 gateway

Electronic Modules

Electronic modules contain the functions of the BL67 modules (power feeding modules, digital and analog input/output modules, technology modules).

Electronic modules are plugged onto the base modules and are not directly connected to the wiring. They can be plugged or pulled when the station is being commissioned or for maintenance purposes, without having to disconnect the field wiring from the base modules.

Figure 3: Electronic module

Power Feeding Modules

Power Feeding modules distribute the required 24 V DC field voltage to the I/O modules. They are necessary for building groups of modules with different potentials within a BL67 station, or if the rated supply voltage for the outputs cannot be guaranteed.

Power Feeding modules are potentially isolated from the gateway, the adjoining power supply module and the I/O modules to the left side.

Note

For detailed information about the individual BL67 I/O components, please refer to the chapters 2 to 8 of the manual "BL67- I/O modules" (TURCK Documentation-No.: German D300572; English: D300529).

The "Appendix" to the manual mentioned above contains (amongst others) a list of all BL67 components and the assignment of electronic modules to base modules.

Figure 4:

module

Base Modules

The field wiring is connected to the base modules.

These are available in the following connection variations:

- 1 × M12, 1 × M12-8, 2 × M12, 2 v M12-P, 4 × M12, 4 × 4 M12-P
- 4 × M8, 8 × M8
- 1 × M23, 1×M23-19
- $1 \times 7/8$ " (for Power Feeding Module)

End Plate

An end plate on the right-hand side physically completes the BL67 station.

It protects the module bus connections of the last base module in a station and guarantees the protection class IP67.

Figure 5: End plate

BL67 - Philosophy

2 Short description of CANopen

CANopen	
General Communication	
 Network Management Messages Service Data Objects (SDOs) Process Data Objects (PDOs) 	4
- Special Function Objects	
BL67 and CANopen	7
Electronic data sheet – EDS file	

CANopen

Note

The following description of CANopen is an excerpt from the homepage of CiA (CAN in Automation), the international users' and manufacturers' organization for CAN.

General

CANopen is an open, non-proprietary network protocol. It consists of a profile family, based on a communication profile and several device profiles. The CANopen communication profile is standardized as CiA DS-301 (Application Layer and Communication Profile).

The CANopen device profile for I/O-modules has been published as CiA DS-401 (Device Profile for I/O-Modules).

CANopen is based on the following standards:

- ISO 11 898 (Physical and Data Link Layer)
- Layers 1 and 2 of the ISO/OSI communication model
- CiA DS-301 (Application Layer and Communication Profile) C ANopen communication profile
- CiA DS-302 (Framework for Programmable CANopen Devices) CANopen Network Management NMT
- CiA DS-401 (Device Profile for I/O-modules)
- CiA DS-406 (Device Profile for Encoders) CANopen device profile for counter modules
- CiA DS-102 (CAN Physical Layer for Industrial Applications) General application in the field sector (connectors and bit rates) on the basis of ISO 11898

Communication

The lower layers of CANopen are defined according to the ISO-OSI model in the ISO 11898 standard.

Communication between the individual nodes is made by transmitting "Telegrams".

4 different types of telegram message are defined for CANopen:

- Network management messages
- Service data objects SDO
- Process data objects PDO
- Predefined messages

Network Management Messages

Network management messages are used in the network to control the nodes and their operating states. This type of message makes it possible, for instance, to configure the data transmission mechanism of a node.

The Network Management objects include Boot-up message, Heartbeat protocol and NMT message.

Boot-up message, Heartbeat and Node Guarding are implemented as single CAN frames with 1-byte data field.

The NMT message is mapped to a single CAN frame with a data length of 2 byte. Its identifier is 0. The first byte contains the command specifier and the second contains the Node-ID of the device that must perform the command (in the case of Node-ID 0 all nodes have to perform the command). The NMT message transmitted by the NMT master forces the nodes to transit to another NMT state. The CANopen state machine specifies the states Initialization, Pre-Operational, Operational and Stopped. After power-on, each CANopen device is in the state Initialization and automatically transits to the state Pre-operational. In this state, transmission of SDOs is allowed. If the NMT master has set one or more nodes into the state Operational, they are allowed to transmit and to receive PDOs. In the state Stopped no communication is allowed except that of NMT objects.

The state Initialization is divided into three sub-states in order to enable a complete or partial reset of a node. In the sub-state Reset Application the parameters of the manufacturer-specific profile area and the standardized device profile area are set to their power-on values. In the sub-state Reset Communication the parameters of the communication profile area are set to their power-on values. The third sub-state is initializing, which a node enters automatically after power-on. Power-on values are the last stored parameters.

The **Heartbeat protocol** is for error control purposes and signals the presence of a node and its state. The Heartbeat message is a periodic message of the node to one or several other nodes. It indicates that the sending node is still working properly.

Besides Heartbeat protocol there exists an old and out-dated error control services, which is called Node and Life Guarding protocol. It is not recommend for implementation.

A device sends the **Boot-up message** to indicate to the NMT master that it has reached the state Pre-operational. This occurs whenever the device initially boots-up but also after a power-out during operation. The Boot-up message has the same identifier as the Heartbeat object, however, its data content is zero.

Service Data Objects (SDOs)

A Service Data Object (SDO) reads from entries or writes to entries of the Object Dictionary.

The SDO transport protocol allows transmitting objects of any size. The first byte of the first segment contains the necessary flow control information including a toggle bit to overcome the wellknown problem of doubly received CAN frames. The next three byte of the first segment contain index and sub-index of the Object Dictionary entry to be read or written. The last four byte of the first segment are available for user data. The second and the following segments (using the very same CAN identifier) contain the control byte and up to seven byte of user data. The receiver confirms each segment or a block of segments, so that a peer-to-peer communication (client/server) takes place.

Process Data Objects (PDOs)

Process Data Objects (PDOs) are mapped to a single CAN frame using up to 8 bytes of the data field to transmit application objects. Each PDO has a unique identifier and is transmitted by only one node, but it can be received by more than one (producer/consumer communication).

PDO transmissions

PDO transmissions may be driven by an internal event, by an internal timer, by remote requests and by the Sync message received:

Event- or timer-driven:

An event (specified in the device profile) triggers message transmission. An elapsed timer additionally triggers the periodically transmitting nodes.

- Remotely requested: Another device may initiate the transmission of an asynchronous PDO by sending a remote transmission request (remote frame).
- Synchronous transmission:

In order to initiate simultaneous sampling of input values of all nodes, a periodically transmitted Sync message is required. Synchronous transmission of PDOs takes place in cyclic and acyclic transmission mode. Cyclic transmission means that the node waits for the Sync message, after which it sends its measured values. Its PDO transmission type number (1 to 240) indicates the Sync rate it listens to (how many Sync messages the node waits before the next transmission of its values). Acyclically transmitted synchronous PDOs are triggered by a defined application-specific event. The node transmits its values with the next Sync message but will not transmit again until another application-specific event has occurred.

Special Function Objects

CANopen also defines three specific protocols for synchronization, emergency indication, and time-stamp transmission.

Synchronization object (Sync)

The Sync Object is broadcast periodically by the Sync Producer. The time period between Sync messages is defined by the Communication Cycle Period, which may be reset by a configuration tool to the application devices during the boot-up process. There can be a time jitter in transmission by the Sync Producer due to some other objects with higher prior identifiers or by one frame being transmitted just before the Sync message. The Sync message is mapped to a single CAN frame with the identifier 128 by default. The Sync message does not carry any data.

Emergency object (Emcy)

The Emergency message is triggered by the occurrence of a device internal error situation and are transmitted from an Emergency producer on the concerned application device. This makes them suitable for interrupt type error alerts. An Emergency message is transmitted only once per 'error event'. As long as no new errors occurs on a device, no further Emergency message can be transmitted. Zero or more Emergency consumers may receive these. The reaction of the Emergency consumer is application-specific. CANopen defines several Emergency Error Codes to be transmitted in the Emergency message, which is a single CAN frame with 8 data byte.

Time stamp object (Time)

By means of Time-Stamp, a common time frame reference is provided to application devices. It contains a value of the type Time-of-Day. This object transmission follows the producer/ consumer push model. The associated CAN frame has the predefined identifier 256 and a data field of 6-byte length.

2

BL67 and CANopen

BL67 supports the following CANopen functions:

- SDO transfer, any length of information
- Emergency object
- Sync frame evaluation
- Event-driven PDOs
- Synchronous PDOs (clock-synchronous)
- Remote-requested PDO/polling

Short description of CANopen

Electronic data sheet - EDS file

CANopen nodes are embedded in the CANopen structure by the help of a standardized EDS file (Electronic Data Sheet).

The EDS file lists all necessary Objects with their corresponding Sub-indices and the matching entries.

The latest version of a particular EDS file can be downloaded directly from the TURCK Homepage www.turck.com:

BL67-GW-CO: BL6827200xyz.eds

(xyz = current version number)

3 BL67 - Gateway for CANopen

Introduction	2
Function	3
Technical Information	4
Structure Diagram Power supply concept Technical Data	6
Connection Options	10
Fieldbus Connections – M12-Connection Fieldbus Termination Power Supply via 7/8'' Service Interface Connection – Connection with I/O-ASSISTANT-Connection Cable	10 11 11 12
Setting the bit transfer rate	13
Node-ID setting	15
Acceptance of the BL67 station configuration	17
Status Indicators/Diagnostic Messages Gateway	18
Diagnostic Messages via LEDs	18

Introduction

This chapter contains a description of BL67 gateways for the standardized fieldbus CANopen. The chapter is divided up as follows: a description of functions, general and specific technical data, a description of addressing and status displays,.

Function

The BL67 gateway enables BL67 modules to operate on CANopen. The gateway is the connection between the BL67 modules and a CANopen host system. It regulates the process data between the I/O level and the fieldbus and generates diagnostic data for the higher-level host system.

Information is made available to the software tool I/O-ASSISTANT via the service interface.

Technical Information

Structure Diagram

The BL67 gateway has the following structure:

BL67 - Gateway for CANopen

Power supply concept

Technical Data

Table 1: Technical data for gateway CANopen	Supply voltage		
	System supply V_{I} (U _B)	24 V DC	used to generate the galvanically isolated module bus supply
	Permissible range	18 to 30 V DC	
	Field supply $V_O(U_L)$	24 V DC	
	Permissible range	18 to 30 V DC	
	Ι _{sys}	600 mA	current consump- tion CPU + module bus at maximum system extension
	I _{MB}	max. 1,3 A	maximum output current of module bus supply
	I _{VI}	max. 4 A	short-circuit and overload protec- tion of the sensor supply from gateway or power feeding module
	I _{vo}	max. 10 A	
	Isolation voltages		
	U _{RS} (PROFIBUS-DP/ service interface)	0 V DC	
	U _{co} (CANopen/ module bus)	0 V DC	
	U_{sys} (V _O / V _I to U _{sys})	1000 V DC	

-	Ambient conditions	
	Ambient temperature	
-	- t _{Ambient}	0 to +55 °C /32 to 131 °F
-	- t _{Store}	- 25 to +85 °C / - 13 to 185 °F
-	Relative humidity	according to IEC 61131-2
-	Climatic tests	according to IEC 61131-2
	Noxious gas	according to IEC 68068-42/43
	Resistance to vibration	according to IEC 61131-2
	Protection class	according to IEC 60529 IP67
-	Shock resistant	according to IEC 61131-2
	Topple and fall/ free fall	according to IEC 61131-2
-	Emitted interference	
	High-frequency, radiated	according to EN 55011, Class A
-	Immunity to interference	
-	Static electricity	according to IEC 61131-2
	Electromagnetic HF fields	according to IEC 61131-2
	Fast transients (Burst)	according to IEC 61131-2
	Conducted interferences induced by HF fields	according to IEC 61000-4-6 10 V Criteria A
A I/O-line-length ≤ 30 m	High energy transients (Surge) A voltage supply	according to IEC 61000-4-5 0,5 kV CM, 12 Ω/ 9 μF 0,5 kV DM, 2 Ω/ 18 μF Criteria B

Reliability	
Operational life MTBF	min. 120000 h
Electronics modules pull/ plug cycles	20
Dimensions	
Width x length x height (mm/inch)	64,5 x 145,0 x 77,5 / 2,54 x 5,71 x 3,05
Diagnostic interface	PS/2-female connector

Warning

This device can cause radio disturbances in residential areas and in small industrial areas (residential, business and trading). In this case, the operator can be required to take appropriate measures to suppress the disturbance at his own cost.

3

Connection Options

Fieldbus Connections

M12-Connection

Two M12 x 1 connectors are provided for gateway communication via the CANopen fieldbus.

M12 x 1 male connector

Figure 5: CAN male connector

M12 x 1 female connector

Figure 6: CAN female connector

Table 2: PIN assignment of the M12 x 1 connectors	Pin-No.	M12 x 1	Description
	1	Shield	Shield connection/ protective earth
	2	n.c.	not connected
	3	GND	System ground (optional)
	4	CAN_H	non-inverted data signal (dominant high)
	5	CAN_L	inverted data signal (dominant low)

Fieldbus Termination

The gateway offers no possibility for terminating the fieldbus.

Note

The fieldbus termination has to be realized externally via a connector with integrated terminating resistor (e.g. male connector: RSE57-TR2, Order-No.: 6602308 or female connector: RKE57-TR2, Order-No.: 6602629).

Power Supply via 7/8"

The power supply is realized via a 7/8" male connector on the gateway.

Figure 7: power supply via 7/8" male connector

Table 3: PIN assignment of the 7/8'' power supply connector	Pin- No.	Color	7/8"	Description
	1	black	GND	
	2	blue	GND	
	3	green/ yellow	PE	Protective earth
	4	brown	V _I (U _B)	Feed-in of nominal voltage for input modules (sensor supply); also used for the generation of the system supply voltage
	5	white	$V_{O}(U_{L})$	Feed-in of nominal voltage for output modules (can be switched off separately)

Service Interface Connection

The following cable can be used to connect the service interface (female PS/2 connector) to a PC for the purpose of using I/O-ASSISTANT (project planning and diagnostic software).

 special I/O-ASSISTANT-connection cable from TURCK (IOASSISTANT-ADAPTERKABEL-BL20/BL67; Ident-no.: 6827133)

Connection with I/O-ASSISTANT-Connection Cable

The I/O-ASSISTANT-cables have a PS/2 male connector (connection for female connector on gateway) and a SUB-D female connector (connection for male connector on PC).

9876

(top view)

Setting the Bit Transfer Rate

The BL67 gateway can communicate with other CANopen nodes at the following transfer rates:

- 10 kbps
- 20 kbps
- 50 kbps
- 125 kbps
- 250 kbps
- 500 kbps
- 800 kbps
- 1 000 kbps

The default transfer rate is 125 kbps.

The transfer rate can be set through the rotary coding switches on the gateway.

Note

All the nodes in a CANopen network must be set to the same transfer rate.

To set a bit transfer rate that is supported by CANopen, proceed as follows:

- **1** Switch off the supply voltage for the BL67 gateway.
- 2 Set the rotary coding switches to the required transfer rate
- **3** Switch on the supply voltage for the gateway again.

Node-ID Setting

A Node-ID is assigned to every BL67 gateway in the CANopen structure.

The setting for the Node-ID of the BL67-GW-CO in a CANopen structure is made through the two rotary coding switches.

The switches can be found beneath a cover, below the service interface.

The BL67 gateway can be used as a CANopen node at any point in the bus structure.

1

Attention

If the BL67 gateway is used as the last node in the bus communication, then a special bus connector with a built-in or add-on termination resistor is absolutely necessary!

Note

It is not necessary to address the internal module bus.

Attention

A maximum of 127 Node-IDs (1 to 127) can be assigned in a CANopen structure. Each Node-ID can only be assigned once in the complete bus structure.

The Node-ID 000 must not be assigned. It is reserved for telegrams that are directed to all the other bus nodes.

The NODE-ID switch on the BL67 CANopen gateway can be used to assign Node-IDs from **1 to 99**!

To set a NODE-ID, proceed as follows:

- Switch off the supply voltage for the BL67 gateway.
- Set the rotary coding switches to the required NODE-ID
- Switch on the supply voltage for the gateway again.

Note

After setting the Node-ID, the protective cover over the switches must be closed again.

Note

BL67 does not support the assignment of Node-IDs across the bus network.

Acceptance of the BL67 Station Configuration

When making a new configuration of the BL67 station or an alteration of the existing station structure ("Module list"), the current configuration must be transferred to the CANopen mirror of the BL67 gateway. This is done through the set button between the two rotary encoding switches.

Note

The green "IOs" LED indicates that the current BL67 configuration matches the stored reference module list.

Pressing the set button with a pointed object for at least 2 seconds saves the current station configuration in non-volatile memory. A hardware reset will then be carried out automatically. With this reset, all the CANopen parameters will be restored to their default values, if the newly saved configuration is different to the old one.

Attention

When saving the BL67 configuration, all the CANopen objects must be parameterized again, if their parameter values differ from the default values. The complete parameterization of the station must subsequently be reloaded into the BL67 station.

The actuation of the button is indicated by a rapid (4 Hz) green blinking of the "IOs" LED. After 2 seconds, the LED changes to yellow blinking at 4 Hz, thus indicating that the station configuration is being saved. When the storage procedure is completed, the LED changes to a continuous green light.

Status Indicators/ Diagnostic Messages Gateway

The gateway transmits the following diagnostics: the status of the BL67 station, the communication via the internal module bus, the communication to PROFIBUS-DP and the status of the gateway.

Diagnostic messages are displayed in two ways:

- via individual LEDs
- via the software of the respective host system (see Chapter 5, Section "Diagnostics - Emergency Frames", Page 5-1 ff.)

Diagnostic Messages via LEDs

Every BL67 gateway displays the following statuses via LEDs:

- 2 LEDs for module bus communication (module bus LEDs):
 GW and IOs
- 2 LEDs for PROFIBUS-DP communication (fieldbus LEDs): ERROR and Bus
- 3 LEDs for monitoring the voltage supply (system, V_{CC}/ inputs, V_I/ outputs, V₀).

Table 4: LED indicators	LED	Status	Meaning	Remedy
	GW	OFF	CPU not supplied.	
		Green	5 V DC operating voltage is present; firm- ware is active; gateway is ready for operation and transfer	-
		Green, flashing, 1 Hz, LED IOs : red	Firmware not active.	 firmware download necessary
		Green, flashing, 1 Hz	V _I : undervoltage or overvoltage V _o : undervoltage	Check that the supply voltage is within the permissible range.
		Green, flashing, 4 Hz	Firmware active, gateway hardware defect.	- Replace the gateway.
		Red and LED " IOs " off	Controller is not ready, V _{CC} level is not within the required range → possible reasons: - too many modules connected to the gateway - short circuit in connected module - hardware error in gateway	 Check wiring at the gateway and the voltage supply. Dismount modules Replace the gateway.

Table 4: LED indicators	LED	Status	Meaning	Remedy
	IOs	-	CPU not supplied.	 Check the voltage supply at the gateway.
		Green	Module bus is running, the configured module bus station corre- sponds to the physi- cally connected station, communication is active.	-
		Green, flashing 1 Hz	Station is in the I/O-ASSISTANT Force Mode.	 Deactivate the I/O-ASSISTANT Force Mode.
		Green, flashing 4 Hz	Maximum number of modules at the gateway is exceeded.	 Check the number of modules connected to the gateway, dismount modules
		Red and LED " GW " off	Controller is not ready, V _{CC} level is not within the required range → possible reasons: - too many modules connected to the gateway - short circuit in connected module - hardware error in - gateway	 Check wiring at the gateway and the voltage supply. Dismount modules Replace the gateway.
		Red flashing, 1 Hz	Non-adaptable modifi- cation of the physically connected station.	 Compare the planned BL67 station with the physical station. Check the physical station for defective or incorrectly fitted elec- tronics modules.

TURCK

Table 4: LED indicators	LED	Status	Meaning	Remedy
		Red flashing, 4 Hz	no module bus communication	 At least one module has to be plugged and has to be able to communicate with the gateway.
		Red/ green flashing, 1 Hz	Adaptable modification of the physically connected station; data transfer possible	 Check the physical station for pulled or new but not planned modules.
	V _{CC}	-	CPU not supplied	 Check the system supply at the gateway.
		Green	Module bus and CPU running	-
	V _o	Green	Supply of outputs ok.	 Check the wiring at the gateway and the voltage supply.
		Green flashing, 1 Hz	undervoltage V _o , System running	 Check the system supply at the gateway
		Green flashing, 4 Hz	Overvoltage V _o , System running	_
		Off	No voltage supply.	_
	V i	Green	sensor supply ok.	_
		Green, flashing, 1 Hz	undervoltage V _I , system running	 Check the wiring of the voltage supply at the gateway
		Green, flashing, 4 Hz	Overvoltage V _I , system running	-

Table 4: LED indicators	LED	Status	Meaning	Remedy
		Red	Short circuit or over- load at sensor supply \rightarrow sensor supply is switched off	 Automatic restart when debugging.
		Off	No voltage supply.	 Check the wiring of the voltage supply at the gateway
	ERR OR	Off	No errors in communi- cation between the BL67-CANopen gateway and other CANopen nodes	_
		Red	Faulty or interrupted communication between BL67- CANopen gateway and other CANopen. Possible causes: – CAN-BusOff – Heartbeat error – Guarding error – Transmit timeout	 Check that the fieldbus ends with a termination resistor, if the BL67- CANopen gateway is the last node in the bus topology. Check the seating of the CANopen bus connector (or the joints in the case of direct wiring). All connections must be correct and properly seated. Check the CANopen cable for possible damage, and for correct connections. Check that the correct bit rate has been set. Check that the NMT- master is still func- tioning properly.

Table 4: LED indicators	LED	Status	Meaning	Remedy
	Bus	OFF	Fieldbus not operating	Wait until the firmware download is finished. If the download is finished: hardware error; replace the gateway.
		red	NMT-slave state of the BL67-CANopen gateway is "Stopped"	-
		orange	NMT-slave state of the BL67-CANopen gateway is "Pre-Opera- tional"	-
		green	NMT-slave state of the BL67-CANopen gateway is "Opera- tional"	-
	ERR OR + BUS	red, blinking alter- nately, 4 Hz	Invalid Node-ID has been set	Set the correct Node-ID with the rotary _{hex} or decimal encoding switches.

BL67 - Gateway for CANopen

4 BL67 - Communication in CANopen

Setting up communication	5
Minimum Boot-up	
Identifier for the Standard Objects	
- Node-ID	
 – COB-ID (Communication Object Identifier) Set up Node Guarding Protocol 	
Boot-up Message	
Parameterization through Service Data Objects (SDO)	15
Read (Read from Object Dictionary)	16
Write (Write to Object Dictionary)	
Commanded Parameter Storing/Restoring	20
Transmission of Process Data Objects (PDO)	
Communication Parameter COB-ID	
Transmission Type	
Inhibit Time	
Event Timer	
Available PDOs	
Mapping Objects in PDOs	
Default-PDOs and PDO-Mappings	
 Default-PDOs as per CiA DS-301 and DS-401 BL67-Specific Default-PDOs 	
Mappable Objects	
Procedure for Altering PDO-Mappings	
Object Dictionary	34
Overview of all Objects	
Commands for "Parameter Save" and "Restore Defaults"	
Objects for the Communication Profile	
- Object 1000hex - Device Type	
 Object 1001hex - Error Register Object 1005hex - SYNC COB-ID 	
- Object 1005hex - Strike COB-iD	
– Object 1009hex - Manufacturer Hardware Version	
– Object 100Ahex - Manufacturer Software Version	
- Object 100Chex - Guard Time	
- Object 100Dhex - Lifetime Factor	
- Object 1010hex - Store Parameters	55

	- Object 1011hex - Restore Default Parameters	.57
	- Object 1014hex - Emcy COB-ID	.59
	- Object 1016hex - Consumer Heartbeat Time	.61
	- Object 1017hex - Producer Heartbeat Time	
	- Object 1018hex - Identity Object	.64
	- Object 1020hex - Verify Configuration	
	- Object 1027hex - Module List	
	Objects for the Transfer of Service Data	
	- Object 1200hex to 1203hex - Server SDO Default Parameters	
	Objects for the Transfer of Process Output Data	
	- Object 1400hex to 141Fhex -	
	Receive PDO Comm. Default Parameters	.74
	- Object 1600hex to 161Fhex - Receive PDO-Mapping Parameter	
	Objects for the Transfer of Process Input data	
	- Object 1800 _{hex} to 181Fhex - Transmit PDO-Parameters	
	- Object 1A00hex to 1A1Fh - Transmit PDO-Mapping Param	
	Objects for Network Management	
	- Object 1F80hex - NMT Startup	
	- Object 1F81hex - Slave Assignment	
	- Object 1F82hex - Request NMT	
	- Object 1F83hex - Request Guarding1	
	Manufacturer Specific Objects1	
	- Object 2000hex - Serial Number1	
	- Object 2010hex - Reset Node Modifiers1	
	- Object 2400hex - System Voltages1	
	- Object 2401hex - System Currents1	
1/0	-Module Objects1	٥٩
"		
	Overview of the I/O-Module Objects1	
	General I/O-Objects1	
	- Object 67FFh - Device Type1	
	Objects for Digital Input Modules1	
	- General Overview for Digital Input Objects1	
	- Object 3064hex - XBI Param Dword1	
	- Object 6000hex - Read Input 8 Bit1	
	- 6020hex - Read Input Bit (1 to 128)1	
	- 6021hex - Read Input Bit(129 to 256)1	
	- 6022hex - Read Input Bit (257 to 288)1	
	- 6100hex - Read Input 16 Bit1	
	- 6120hex - Read Input 32 Bit1	
	Objects for Digital Output Modules1	
	- General Overview for Digital Output Objects1	
	- 6200 _{hex} - Write Output 8 Bit1	23

- 6220hex - Write Output Bit (1 to 128)	124
- 6221hex - Write Output Bit (129 to 256)	
- 6222hex - Write Output Bit (257 to 288)	124
- 6300hex - Write Output 16 Bit	
– 6320hex - Write Output 32 Bit	126
- 6206hex - Error Mode Output 8 Bit	127
- 6207hex - Error State Output 8 Bit	128
- 6250hex - Error Mode Output Bit (1 to 128)	
- 6251hex - Error Mode Output Bit (129 to 256)	129
- 6252hex - Error Mode Output Bit (257 to 288)	
- 6260hex - Error State Output Bit (1 to 128)	131
- 6261hex - Error State Output Bit (129 to 256)	
- 6262hex - Error State Output Bit (257 to 288)	131
- 6306hex - Error Mode Output 16 Bit	133
- 6307hex - Error State Output 16 Bit	
- 6326hex - Error Mode Output 32 Bit	135
- 6327hex - Error State Output 32 Bit	136
Objects for Digital Combi Modules	137
- Object 3064hex - XBI Param Dword	137
Objects for Analog Input Modules	140
- General Overview for Analog Input Objects	
- 5420hex - Manu Spec Analog Input Range	
- 6401hex - Read Analog Input 16 Bit	
- 6421hex - Analog Input Interrupt Trigger Selection	
- 6422hex - Analog Input Interrupt Source	151
- 6423hex - Analog Input Global Interrupt Enable	
- 6424hex - Analog Input Interrupt Upper Limit Integer	
- 6425hex - Analog Input Interrupt Lower Limit Integer	
- 6426hex - Analog Input Interrupt Delta Unsigned	
- 6427hex - Analog Input Interrupt Negative Delta Unsigned	
- 6428hex - Analog Input Interrupt Positive Delta Unsigned	
Objects for Analog Output Modules	
- General Overview for Analog Output Objects	
- 6411hex - Write Analog Output 16 Bit	
- 6443hex - Analog Output Error Mode	
- 6444hex - Analog Output Error State	
- 5440hex - Manu spec Analog Output Range	
Objects for RS232/485-Modules	
- General Overview for RS232/485 Objects	
- 5600hex - RS232/RS4xx Parameters	
- 5601hex - RS232/RS4xx RxD	
– 5602hex - RS232/RS4xx TxD	
Objects for SSI-Modules	178

- General Overview for SSI Objects	178
– 5801hex – Encoder Config	179
- Object 5802hex - Encoder Status	182
- Object 5803hex - Encoder Flags	183
– Object 5804hex – Encoder Diag	185
- Object 5805hex - SSI Native Status	187
- Object 5806hex - SSI Optional Encoder Status	191
- Object 5808hex - Encoder Control	192
- Object 5840hex - SSI Diag Mapping	193
- Object 6800hex - Operating Parameters	195
- Object 6810hex - Preset Values for Multi-Sensor Devices	195
- Object 6820hex - Position Value	196
- Object 6B00hex - CAM State Register	197
- Object 6B01hex - CAM Enable Register	198
- Object 6B02hex - CAM Polarity Register	199
- Object 6B10hex - CAM1 Low Limit	200
– Object 6B20hex – CAM1 High Limit	200

Setting up communication

Minimum Boot-up

BL67 supports the Minimum Boot-up function described in CiA DS-301.

Table 1: Meaning of the abbreviations	Abbrevia- tion	Meaning	Explanation
	CS	NMT command specifier	A designation label for the required service
	Node-ID	Node identifier	Identifier for the node; an iden- tification byte that is set through the rotary decimal encoding switches for the CAN node. Possible values for CANopen are 01 _{hex} to 7F _{hex} (1 to 127).

Booting with the Minimum Boot-up function is the typical application option for CANopen, and runs according to the following state diagram:

- 1 Power-on (automatic change of state to the "Initialization" condition)
- 2 Initialization Finished (automatic change of state to "Pre-Operational")
- 3 Start Remote Node (start the CAN node)
- 4 Enter Pre-Operational (change over to "Pre-Operational")
- 5 Stop Remote Node (stop the CAN node)
- 6 Start Remote Node (start the CAN node)
- 7 Enter Pre-Operational (change to "Pre-Operational")
- 8 Stop Remote Node (stop the CAN node)
- **9** Reset Node (reset the complete CAN node)
- **10** Reset Node (reset the complete CAN node)
- **11** Reset Node (reset the complete CAN node)
- 12 Reset Communication (reset communication for the CAN node)
- **13** Reset Communication (reset communication for the CAN node)
- **14** Reset Communication (reset communication for the CAN node)

The following messages are exchanged in the states mentioned:

- Operational: PDO and SDO communication
- Pre-Operational: only SDO communication

The services listed above (1 to 14) are required by CANopen or performed independently by the nodes in order to change from one state to another.

The "Stopped" state can be skipped when using Minimum Boot-up.

- 1 Power-on (automatic change of state to the "Initialization" state)
- 2 Initialization finished (automatic change of state to the "Pre-Operational" state)
- 3, 6 Start Remote Node (start the CAN node)

The internal change of state of the CANopen slave now requires a pause of at least 20 ms, before another request may be made by the master.

4, 7 Enter Pre-Operational (change over to "Pre-Operational")

The internal change of state of the CANopen slave now requires a pause of at least 20 ms, before another request may be made by the master. 4

5, 8 Stop Remote Node (stop the CAN node)

The internal change of state of the CANopen slave now requires a pause of at least 20 ms, before another request may be made by the master.

9, 10, 11 Reset Node (reset the complete CAN node)

The execution of this command is confirmed by a boot-up message. This is in the form of a guard frame with the data contents 00_{hex} .

12, 13, 14 Reset Communication (reset communication for the CAN node)

The execution of this command is confirmed by a boot-up message. This is in the form of a guard frame with the data contents 00_{hex} .

Identifier for the Standard Objects

Node-ID

The identifier for each device in a CANopen network is the Node-ID. The CANopen slaves can be assigned the Node-IDs 1 to 127 ("Node-ID Setting", page 3-15).

COB-ID (Communication Object Identifier)

The identifier for each communication object in a CANopen network is the COB-ID.

The COB-IDs for the standard objects (digital input, digital output, analog input, analog output) are assigned automatically. The ranges for the COB-IDs are defined by the "Predefined Master-Slave Connection Set".

Each range for the COB-IDs has 127 numerical values.

The COB-IDs are calculated according to the following rule:

COB-ID = Base-ID + Node-ID

Base-ID (decimal): 128; 384; 512; 640; 768; 896; 1024; 1152; 1280; 1408; 1536; 1792

Table 2:	COB-ID		Function	Application
Identifiers for basic objects	dec.	hex.	_	
	0	000 _{hex}	Network Management (NMT)	Broadcast object
	01 to 127	001 _{hex} to 07F _{hex}	free	
	128	080 _{hex}	Synchronization (SYNC)	Broadcast object
	129 to 255	081 _{hex} to 0FF _{hex}	Emergency Message	
	256	100 _{hex}	Timestamp	Message Broad- cast object
	257 to 384	101 _{hex} to 180 _{hex}	free	

Node-ID (decimal): 1 to 127

BL67 - Communication in CANopen

Table 2: Identifiers for	COB-ID		Function	Application
basic objects	dec.	hex.		
	385 to 511	181 _{hex} to 1FF _{hex}	Transmit PDO 1	Digital input
	512	200 _{hex}	free	
	513 to 639	201 _{hex} to 27F _{hex}	Receive PDO 1	Digital output
	640 free	280 _{hex}		
	641 to 767	281 _{hex} to 2FF _{hex}	Transmit PDO 2	Analog input
	768	300 _{hex}	free	
	769 to 895	301 _{hex} to 37F _{hex}	Receive PDO 2	Analog output
	896	380 _{hex}	free	
	897 to 1023	381 _{hex} to 3FF _{hex}	Transmit PDO 3	Analog input
	1024 free	400 _{hex}		
	1025 to 1151	401 _{hex} to 47F _{hex}	Receive PDO 3	Analog output
	1152	480 _{hex}	free	
	1153 to 1279	481 _{hex} to 4FF _{hex}	Transmit PDO 4	Analog input
	1280	500 _{hex}	free	
	1281 to 1407	501 _{hex} to 57F _{hex}	Receive PDO 4	Analog output
	1408	580 _{hex}	free	
	1409 to 1535	581 _{hex} to 5FF _{hex}	Transmit SDO	

Table 2: Identifiers for	COB-ID		Function	Application
basic objects	dec.	hex.	_	
	1536	600 _{hex}	free	
	1537 to 1663	601 _{hex} to 67F _{hex}	Receive SDO	
	1664 to 1772	680 _{hex} to 6EC _{hex}	free	
	1793 to 1919	701 _{hex} to 77F _{hex}	NMT Error (Node Guarding, Heartbeat, Boot-up)	
	1920 to 2014	800 _{hex} to 7DE _{hex}	free	
	2015 to 2031	7DF _{hex} to 7EF _{hex}	NMT, LMT, DBT	

Set up Node Guarding Protocol

Note

Further information on Node Guarding can be found in CiA DS-301.

Node Guarding is the name for the monitoring of network nodes by a network manager.

In addition, the CANopen network nodes check that their network manager is operating correctly and that the network is functioning reliably.

In the default state, Node Guarding is inactive. To activate the Node Guarding protocol at a node, various parameters must be set for the Object Dictionary:

[100C] = Guard time

Given in milliseconds; the query interval (polling) that is to be expected by the network slave Default = 0

[100D] = Lifetime factor

This factor, multiplied by the Guard time, is the time that should elapse after a Node Guarding protocol error before the network slave generates an error message via EMCY. In this way, a temporary communication problem, such as may be caused by heavy bus loading, can be bridged without a Guarding Error. Default = 0

Guard-ID

This is fixed and cannot be changed.

Guarding is initiated with the first Guard-Remote frame (Guarding-RTR) from the CANopen network manager.

The Guarding Frame of the network manager has the COBID "1793 - 1 + Node-ID" and does not have a data field.

Furthermore, the RTR bit in the message header must be set and the Data Length code = 1.

The node answers the telegram sent out by the network manager within the preset time (Guard time) in the "Operational" state, with the data contents **5**. The gateway answers the next polling query with the contents **133**. The following response from the gateway is with **5** again, and so on. This means that the gateway changes the state of the most significant bit after every query (i.e. the bit is toggled).

If the node is in the "Pre-Operational" state, then the value of the data contents of the response telegram toggles between 127 and 255. If the node is in the "Stop" state, the value toggles between 4 and 132.

If there is no query from the network manager within the preset time, then the gateway changes to the state "Guard Fail". If output modules are fitted in the BL67 station, then their outputs will be put into defined states, depending on the objects "Error mode output" and "Error state output", or will retain the last state that was received. Any RxPDOs that are received will still be processed and output again. If the Guarding starts up again, the BL67 gateway leaves the "Guard Fail" state, but remains in the Pre-Operational state.

A "Start Node" command must be generated by the network manager in order to restart the BL67 gateway (see CiA DS-301).

If the setting is Guard time = 0, then "passive Guarding" will occur. This means that the gateway answers the Guard Remote frames, without starting its own internal Guard timer and without changing into the "Guard fail" state.

As an alternative to Node-/Life-Guarding, the Heartbeat mechanism newly introduced with DS301 V4.0 is supported, which, unlike Guarding, does not require Remote frames.

TURCK

Boot-up Message

After initialization (after Power-On, Reset-Node and Reset-Communication), a Boot-up message as per CiA DS-301 V4.0 is sent out. This is in the form of a guard frame with the contents 00_{hex} .

Under certain circumstances, a network manager may fail to detect a short drop-out of an BL67 gateway (for example, as a result of voltage variations). This could occur under the following conditions:

- The drop-out and initialization of the gateway happen in the time between two Guarding-Frames
- The gateway was already in the Pre-Operational state beforehand
- The last state of the toggle bit was 1

If a Boot-up message is sent out after a reset or initialization, then the drop-out mentioned above will also not be missed by the network manager.

Parameterization through Service Data Objects (SDO)

SDO (= Service Data Object) is a confirmed CANopen service that is primarily used for parameterization and configuration of the CANopen slaves (BL67) and less frequently for transmitting process data. "Confirmed" means that an BL67-CANopen gateway (SDO server) that is addressed by this procedure must acknowledge it through an response. In this way, the SDO client obtains information about whether the BL67 gateway that it addressed was contacted, and whether the access was achieved without any errors (error code in the response from the SDO server). SDO access means that the contents of the Object Dictionary entries for an SDO server can be read or written, and that the settings for an BL67 station can be made in this way.

Four parallel SDO servers are supported. There are three "additional" SDOs, as well as the default SDO. As a default, these are inactive, but can be parameterized and enabled through the Object Dictionary entries 1201_{hex} to 1203_{hex}.

The communication parameters for the default SDO follow the Predefined Connection Set, and cannot be modified (see CiA DS-301, V4.01)

In the following representations of the messages, the identifier of the CANopen message that is to be sent can be found below the frame, and the contents of the data byte to be transmitted are within the frame.

The following representations use the Expedited SDO Transfer, i.e. a maximum of 4 bytes of user data can be transferred within one telegram.

Note

CANopen also offers the possibility of segmented SDO-transfer of data with data length of more than 4 bytes.

Read (Read from Object Dictionary)

x... depending on the length of data read

- LSB = Least Significant Byte \rightarrow lowest value byte
- $\mathsf{MSB} = \mathsf{Most} \ \mathsf{Significant} \ \mathsf{Byte} \to \mathsf{highest} \ \mathsf{value} \ \mathsf{byte}$
- SCS = Server Command Specifier \rightarrow server command specifier
- CCS = Client Command Specifier \rightarrow client command specifier

(see CiA DS-301)

The stated COB-ID refers to the default SDO server.

Note

The BL67 gateway generates length information as to how many data bytes are to be read (see CiA DS-301, Page 9-24 ff). This information is found in byte 0 "CCS = 4xh". The value x depends on the length of data read.

Write (Write to Object Dictionary)

- LSB = Least Significant Byte \rightarrow lowest value byte
- $\mathsf{MSB} = \mathsf{Most} \ \mathsf{Significant} \ \mathsf{Byte} \to \mathsf{highest} \ \mathsf{value} \ \mathsf{byte}$
- $\mathsf{SCS} \quad = \mathsf{Server} \; \mathsf{Command} \to \mathsf{Specifier} \; \mathsf{server} \; \mathsf{command} \; \mathsf{specifier}$
- $\label{eq:CCS} \mathsf{CCS} \ = \mathsf{Client} \ \mathsf{Command} \rightarrow \mathsf{Specifier} \ \mathsf{client} \ \mathsf{command} \ \mathsf{specifier}$

(see CiA DS-301)

The stated COB-ID refers to the default SDO server.

Note

The information in byte 0 "SCS = 2xh" can optionally contain the length information for the transmitted data bytes (see CiA DS-301, Page 9-21 ff). The information in byte 0 "SCS = 22_{hex} " means that no length information is present.

Attention

If an incorrect data length is given, the error code "Abort SDO Transfer Service" will be generated (see CiA DS-301, Page 9-26).

BL67 - Communication in CANopen

Table 3: Abort codes for errors in SDO transfer	Abort code	Description
	0503 0000 _{hex}	Toggle bit not altered.
	0504 0001 _{hex}	Client server command specifier not valid or unknown.
	0601 0000 _{hex}	Unsupported access to an object.
	0601 0001 _{hex}	Attempt to write a read only object.
	0601 0002 _{hex}	Attempt to read a write only object.
	0602 0000 _{hex}	Object does not exist in the object dictionary.
	06040041 _{hex}	Object cannot be mapped to the PDO.
	06040042 _{hex}	The number an length of objects exceeds PDO length.
	06040043 _{hex}	General parameter incompatibility reason.
	06040047 _{hex}	General internal incompatibility in the device.
	06070010 _{hex}	Data type does not match - wrong length.
	0607 0012 _{hex}	Data type does not match- length too high.
	0607 0013 _{hex}	Data type does not match- length too low.
	06090011 _{hex}	Sub-index does not exist.
	06090030 _{hex}	Value range of parameter exceeded.
	06090031 _{hex}	Value range of parameter written too high.
	06090032 _{hex}	Value range of parameter written too low.
	06090036 _{hex}	Maximum value is less than minimum value.
	08000000 _{hex}	Other error
	08000020 _{hex}	Data cannot be stored to the application.

Table 3: Abort codes for errors in SDO transfer	Abort code	Description
	08000021 _{hex}	Data cannot be stored to the app. because of local control.
	08000022 _{hex}	Data cannot be stored to the app. because of device state.

Example:

Write a new COB-ID for RxPDO 1 (ID = 258_{hex})

Commanded Parameter Storing/Restoring

Saving of communication and application parameters is executed by a command. This means that the parameters transferred through an SDO are held in volatile memory, until they are saved by using the command "Store parameters" (Object 1010_{hex} , Sub-indices 0 to 3). All the communication and application parameters that are supported by the gateway will be saved.

The command "Restore Default parameters" (Object 1011_{hex} , Subindices 0 to 3) is also supported. This command resets all the communication and/or application parameters to the default values.

Transmission of Process Data Objects (PDO)

CANopen provides PDO communication (PDO = Process Data Object). PDOs are fast real-time process data that are handled as unconfirmed services without a protocol overhead. PDOs can contain a maximum of 8 bytes of data. They can be assembled and configured by the user to suit the specific requirements. In addition, there are a number of transmission/transfer settings (Transmission types) for process data.

The following attributes can be set for each PDO, through the object "PDO communication parameter":

Communication Parameter COB-ID

The COB-ID is the CAN identifier that is used for the transmission of a PDO (object 1400_{hex} ff and 1800_{hex} ff).

COB-IDs are used to define the priority of the message telegrams. The lowest COB-ID has the highest priority.

For communication between 2 nodes, the COB-ID of the transmit PDO must be the same as the COB-ID of the receive PDO.

Note

As delivered, each BL67 gateway has from none to eight active PDOs, with COB-IDs that are taken from the Predefined Master-Slave Connection Set.

All other PDOs are inactive. This state can be seen from the invalid bit (Bit 31) of the COB-ID.

Transmission Type

The Transmission type determines under which circumstances a PDO can be transmitted or received.

The following PDO Transmission types are supported by BL67:

- Type 0 (sync)
- Type 1 (cyclic)
- Type 253 (remote request)
- Type 255 (event-driven)

Table 4: Transmission type of BL67		PDO transmission				
		cyclic	acyclic	synchr.	asynchr.	only with RTR
	0		×	×		
	1	×		×		
	253				×	×
	255				×	

Type 0

The PDO will always be transmitted (TPDO) or evaluated (RPDO) if this is permitted by a Sync-Frame transmitted by the SYNC producer and the mapped contents of the BL67-CANopen gateway have changed since the last transmission.

Type 1

Immediately after receiving each Sync-Frame, the BL67-CANopen gateway puts out the mapped contents as a PDO on the network, even if they have not changed since the last transmission.

Type 253

The PDO is only transmitted if a transmitted Remote-Frame requests this from the BL67-CANopen gateway.

Attention

The following Transmission type (Type 255) is only permissible for TPDOs.

Type 255

In this mode of operation, the BL67-CANopen gateway does not depend on any Sync or Remote-Request for PDO communication. Whenever this is envisaged for an internal event within the BL67-CANopen gateway, the gateway will transmit a PDO to the CANopen network.

The Transmission types of the individual PDOs are independent, which means that a freely mixed operation with synchronous and asynchronous PDOs is possible.

Inhibit Time

The setting of an Inhibit time for the PDOs (Object 1800_{hex} ff, Sub-Index 03_{hex}) is only supported for TPDOs. Unlike the other time values, which are given as multiples of 1 ms, the Inhibit time is defined as a multiple of 100 μ s. However, since the time resolution of the system clock in the BL67-CANopen gateway is 1 ms, Inhibit time values below 10 x 100 μ s are pointless.

Event Timer

The Event timer (Object 1800_{hex} ff, Sub-Index 05_{hex}) defines the maximum interval after which a TPDO will be transmitted, even though no event has occurred. This means that the Event timer determines the maximum interval between two transmissions of a TPDO.

The expiry of the interval set for the Event timer is detected as an event. If any other event occurs, the Event timer is reset and restarted.

The value of the object is interpreted as a multiple of 1 ms.

4

Available PDOs

64 PDOs are supported:

- 32 Receive PDOs: TPDO1 to TPDO32 (Index 1800_{hex} to 181F_{hex})
- 32 Transmit PDOs: RPDO1 to RPDO32 (Index 1400_{hex} to 141F_{hex})

The corresponding Default Master-Slave Connection Set is supported for each of the PDOs 1 to 4, so that a COB-ID distribution is not necessary for these PDOs.

If one of the COB-IDs from xPDO1 to xPDO4 is reconfigured, then the use of a COB-ID from the Default Master-Slave Connection Set can be achieved by setting this COB-ID to 0.

Mapping Objects in PDOs

Mapping is the assignment of objects from an Object Dictionary in a PDO for transmission/reception through the CAN-bus. More than one object can be transmitted in a single PDO.

The Mapping parameters determine which items of information are transmitted in a PDO:

Table 5: Object Dictionary for mapping parameters	PDO		Object Dictionary entries Range	
	Туре	Range	Range	
	Transmit-PDOs	TPDO1 to TPDO32	1A00 _{hex} to 1A1F _{hex}	
	Receive-PDOs	RPDO1 to RPDO32	1600 _{hex} to 161F _{hex}	

Default-PDOs and PDO-Mappings

The 4 Transmit and 4 Receive-PDOs which are specified by the Communication Profile CiA DS-301 are supported by BL67. The mapping of these PDOs and their Transmission types are specified by the I/O-Device Profile CiA DS-401.

Note

The Default-PDOs are only activated if the planned objects and subindices actually exist for the corresponding PDO. If, for instance, no analog I/Os are used in a BL67 station, then the PDOs 2 to 4 are set to "Invalid" and no mapping entries will be present.

In addition to the default PDOs which are standardized by the CiA DS-301 and DS-401 profiles, other PDOs for an BL67-CANopen gateway may be provided with mapping entries and communication parameters. These additional PDOs (5 to 16) will be set to "Invalid" as a default.

Default-PDOs as per CiA DS-301 and DS-401

The TPDOs in the following table have the following characteristics:

- The COB-ID is part of sub-index 01_{hex}
- The PDO is active!

The first digit of the 8-digit hexadecimal COB-ID-number shows amongst others, if the PDO is valid. Active PDOs are marked by a hex-digit < 7. Normally, the digit is 0 or $4 \rightarrow$ page 4-83.

TURCK

Meaning	TPDO	Sub-Index 01 _{hex} - "COB-ID"
1st group, digital input channels, (Bits 0 to 63)	PDO1 1800 _{hex}	0000 0180 _{hex} + Node-ID
1st group, analog input channels, (Channel 0 to 3)	PDO2 1801 _{hex}	0000 0280 _{hex} + Node-ID
2nd group, analog input channels, (Channel 4 to 7)	PDO3 1802 _{hex}	0000 0380 _{hex} + Node-ID
3rd group, analog input channels, (Channel 8 to 11)	PDO4 1803 _{hex}	0000 0480 _{hex} + Node-ID

Overview of the Default-TPDOs as per CiA DS-301 and DS-401

Overview of the Default-RPDOs as per CiA DS-301 and DS-401

Meaning	TPDO	COB-ID
1st group, digital output channels, (Bits 0 to 63)	PDO1 1400 _{hex}	0000 0200 _{hex} + Node-ID
1st group, analog output channels, (Channel 0 to 3)	PDO2 1401 _{hex}	0000 0300 _{hex} + Node-ID
2nd group, analog output channels, (Channel 4 to 7)	PDO3 1402 _{hex}	0000 0400 _{hex} + Node-ID
3rd group, analog output channels, (Channel 8 to 11)	PDO4 1403 _{hex}	0000 0500 _{hex} + Node-ID

BL67-Specific Default-PDOs

These additional PDOs are always set to "Invalid" as a default.

Before enabling these PDOs, the corresponding parameters must be checked. This applies especially to the COB-IDs, since these are taken from the Default Master-Slave Connection Set, and are assigned to other Node-IDs. For this reason, other nodes with the corresponding Node-ID must not be present in the network, or such nodes must not use the corresponding COB-IDs.

The Transmission type of these PDOs is generally 255.

Overview of the BL67-specific TPDOs

Meaning	TPDOs	COB-ID TPDO
2nd group, digital input channels (Bits 64 to 127)	PDO5 1804 _{hex}	8000 01C0 _{hex} + Node-ID
3rd group, digital input channels (Bits 128 to 191)	PDO6 1805 _{hex}	8000 02C0 _{hex} + Node-ID
4th group, digital input channels (Bits 192 to 255)	PDO7 1806 _{hex}	C000 03C0 _{hex} + Node-ID
5th group, digital input channels (Bits 256 to 319)	PDO8 1807 _{hex}	C000 04C0 _{hex} + Node-ID
1st group, encoders (Channels 0 + 1)	PDO9 1808 _{hex}	C000 01E0 _{hex} + Node-ID
2nd group, encoders (Channels 2 + 3)	PDO10 1809 _{hex}	C000 02E0 _{hex} + Node-ID
3rd group, encoders (Channels 4 + 5)	PDO11 180A _{hex}	C000 03E0 _{hex} + Node-ID
4th group, encoders (Channels 6 + 7)	PDO12 180B _{hex}	C000 04E0 _{hex} + Node-ID
4th group, analog input channels (Channels 12 to 15)	PDO13 180C _{hex}	C000 01A0 _{hex} + Node-ID
5th group, analog input channels (Channels 16 to 19)	PDO14 180D _{hex}	C000 02A0 _{hex} + Node-ID

TURCK

Meaning	TPDOs	COB-ID TPDO
6th group, analog input channels (Channels 20 to 23)	PDO15 180E _{hex}	C000 03A0 _{hex} + Node-ID
7th group, analog input channels (Channels 24 to 27)	PDO16 180F _{hex}	C000 04A0 _{hex} + Node-ID
1st group, RS×× I/Os (Channel 0)	PDO18 1811 _{hex}	C000 0000 _{hex}
1st group, RS×× I/Os (Channel 1)	PDO19 1812hex	C000 0000 _{hex}

Overview of the BL67-specific RPDOs

Meaning	RPDOs	COB-ID RPDO
2nd group, digital output channels (Bits 64 to 127)	PDO5 1404 _{hex}	8000 0240 _{hex} + Node-ID
3rd group, digital output channels (Bits 128 to 191)	PDO6 1405 _{hex}	8000 0340 _{hex} + Node-ID
4th group, digital output channels (Bits 192 to 255)	PDO7 1406 _{hex}	8000 0440 _{hex} + Node-ID
5th group, digital output channels (Bits 256 to 319)	PDO8 1407 _{hex}	8000 0540 _{hex} + Node-ID
1st group, encoders (Channels 0 + 1)	PDO9 1408 _{hex}	8000 0260 _{hex} + Node-ID
2nd group, encoders (Channels 2 + 3)	PDO10 1409 _{hex}	8000 0360 _{hex} + Node-ID
3rd group, encoders (Channels 4 + 5)	PDO11 140A _{hex}	8000 0460 _{hex} + Node-ID
4th group, encoders (Channels 6 + 7)	PDO12 140B _{hex}	8000 0560 _{hex} + Node-ID
4th group, analog output channels (Channels 12 to 15)	PDO13 140C _{hex}	8000 0220 _{hex} + Node-ID

Meaning	RPDOs	COB-ID RPDO
5th group, analog output channels (Channels 16 to 19)	PDO14 140D _{hex}	8000 0320 _{hex} + Node-ID
6th group, analog output channels (Channels 20 to 23)	PDO15 140E _{hex}	8000 0420 _{hex} + Node-ID
7th group, analog output channels (Channels 24 to 27)	PDO16 140F _{hex}	8000 0520 _{hex} + Node-ID
1st group, RS×× I/Os (Channel 0)	PDO18 1411 _{hex}	8000 0000 _{hex}
1st group, RS×× I/Os (Channel 1)	PDO19 1412 _{hex}	8000 0000 _{hex}

The COB-IDs for the RS×××-Module must be defined by the user!

Example

The own Node-ID of an BL67-CANopen gateway is 1. There are more than 12 analog input channels. As a result, appropriate mapping entries are set up for TPDO13 (Object 1A0Chex), and the COB-ID (Object 180C, Sub-Index 1) is pre-loaded with the value 8000 01A1hex. This PDO can only be enabled without alteration if a node with the Node-ID 33 (own Node-ID + 32) does not exist, or at least its TPDO1 is not used.

The following table illustrates the systematic relationship:

Table 6: Relationship between a Node- ID and BL67- specific PDOs	PDO	Node-ID assigned to this COB-ID in the Default Master-Slave Connection Set	Original PDO, to which this COB-ID is assigned in the Default Master- Slave Connection Set
	PDO5	own Node-ID + 64 (40 _{hex})	PDO1
	PDO6	own Node-ID + 64 (40 _{hex})	PDO2
	PDO7	own Node-ID + 64 (40 _{hex})	PDO3

TURCK

Table 6: Relationship between a Node- ID and BL67- specific PDOs	PDO	Node-ID assigned to this COB-ID in the Default Master-Slave Connection Set	Original PDO, to which this COB-ID is assigned in the Default Master- Slave Connection Set
	PDO8	own Node-ID + 64 (40 _{hex})	PDO4
	PDO9	own Node-ID + 96 (60 _{hex})	PDO1
	PDO10	own Node-ID + 96 (60 _{hex})	PDO2
	PDO11	own Node-ID + 96 (60 _{hex})	PDO3
	PDO12	own Node-ID + 96 (60 _{hex})	PDO4
	PDO13	own Node-ID + 32 (20 _{hex})	PDO1
	PDO14	own Node-ID + 32 (20 _{hex})	PDO2
	PDO15	own Node-ID + 32 (20 _{hex})	PDO3
	PDO16	own Node-ID + 32 (20 _{hex})	PDO4

Mappable Objects

The maximum of 64 mapping entries per PDO that is specified by Communication Profile CiA DS-301 is supported.

The following objects from the Object Dictionary can be mapped:

Table 7: Overview of mappable objects	Name	Index	Sub-index	Direction
A Objects ×××1 and ×××2 will be generated if the	Dummy mapping Boolean	0001 _{hex}	-	Receive
number of digital input or output channels exceeds	Dummy mapping Boolean Integer8	0002 _{hex}	-	Receive
the value 128 or 256 respectively.	Dummy mapping Boolean Integer16	0003 _{hex}		Receive
	Dummy mapping Boolean Integer32	0004 _{hex}		Receive
	Dummy mapping Boolean Unsigned8	0005 _{hex}	-	Receive
	Dummy mapping Boolean Unsigned16	0006 _{hex}	-	Receive
	Dummy mapping Boolean Unsigned32	0007 _{hex}	-	Receive
	Error register	1001 _{hex}	-	Transmit
	Manu Spec Analog Input Range	5420 _{hex}	1 to n	Transmit
	RS232/RS4xx RxD	5601 _{hex}	1 to n	Receive
	RS232/RS4xx TxD	5602 _{hex}	1 to n	Transmit
	Encoder status	5802 _{hex}	1 to n	Transmit
	Encoder flags	5803 _{hex}	1 to n	Transmit
	SSI Native status	5805 _{hex}	1 to n	Transmit

TURCK

Table 7: Overview of mappable objects	Name	Index	Sub-index	Direction
A Objects ×××1 and ×××2 will be generated if the	SSI Optional encoder status	5806 _{hex}	1 to n	Transmit
number of digital	Encoder control	5808 _{hex}	1 to n	Receive
input or output channels exceeds	Read input 8 bit	6000 _{hex}	1 to n	Transmit
the value 128 or 256 respectively.	Read input bit (1 to 128) A	6020 _{hex}	1 to n	Transmit
	Read input 16 bit	6100 _{hex}	1 to n	Transmit
	Read input 32 bit	6120 _{hex}	1 to n	Transmit
	Write output 8 bit	6200 _{hex}	1 to n	Receive
	Write output bit (1 to 128) A	6220 _{hex}	1 to n	Receive
	Write output 16 bit	6300 _{hex}	1 to n	Receive
	Write output 32 bit	6320 _{hex}	1 to n	Receive
	Read analog input 16 bit	6401 _{hex}	1 to n	Transmit
	Write analog output 16 bit	6411 _{hex}	1 to n	Receive
	Position Value for Multi-Sensor Devices	6820 _{hex}	1 to n	Transmit
	CAM1 State register	6B00 _{hex}	1 to n	Transmit
	Area State register	6C00 _{hex}	1 to n	Transmit

Procedure for Altering PDO-Mappings

The Communication Profile CiA DS-301 Version 4 defines a detailed procedure for altering PDO-mappings.

For the BL67 gateway, this results in the following method for modifying PDO-mappings:

- The node state of the gateway must be "Pre-Operational".
- The number of mapping entries (Sub-index 0) for a PDO must be set to 0.
- The mapping entries (Sub-index 1 to 64) can be written.
- The number of mapping entries (Sub-index 0) must now be set to the valid number of mapped objects.
- Alternatively, the new mapping can be saved in non-volatile memory (Store Communication parameters).

The following abort codes (Abort-Domain-Protocol) may be sent back by the gateway in case of an error:

Table 8: Abort codes	Abort code	Description as per CiA DS-301	Possible cause
	0604 0041 _{hex}	Object cannot be mapped	Invalid object-index transferred while writing the mapping entries.
	0604 0042 _{hex}	Number or length of the objects exceeds the PDO length	Attempted to map too many or excessively long objects to a PDO. This will be returned on writing to the sub-index 0.
	0609 0011 _{hex}	Sub-index does not exist	A sub-index > 64 was addressed.
	0800 0022 _{hex}	Access not possible in this node state	Write access is only possible in the "Pre-Operational" node state. Write access to Sub-indices 1 to 64 is only possible if sub-index 0 is written with value 0.

Object Dictionary

Object Dictionary

Overview of all Objects

The following table provides an overview of all the objects that are supported by the BL67 CANopen gateway.

Table 9: Overview of all objects	Index	Name	Page				
	CANopen Standard Objects						
	1000 _{hex}	Device type	page 4-46				
	1001 _{hex}	Error register	page 4-47				
	1005 _{hex}	SYNC COB-ID	page 4-48				
	1008 _{hex}	Device name	page 4-47				
	1009 _{hex}	Manufacturer hardware version	page 4-51				
	100A _{hex}	Manufacturer software version	page 4-52				
	100C _{hex}	Guard time	page 4-52				
	100D _{hex}	Lifetime factor	page 4-54				
	1010 _{hex}	Store parameters	page 4-55				
	1011 _{hex}	Restore default parameters	page 4-57				
	1014 _{hex}	Emcy COB-ID	page 4-59				
	1016 _{hex}	Consumer heartbeat time	page 4-61				
	1017 _{hex}	Producer heartbeat time	page 4-63				
	1018 _{hex}	Identity object	page 4-64				
	1020 _{hex}	Verify configuration	page 4-67				
	1027 _{hex}	Module list	page 4-69				

Overview of all objects	Index	Name	Page
	1200 _{hex} to 1203 _{hex}	Server SDO parameters	page 4-71
	1400 _{hex} to 141F _{hex}	Receive PDO Communication parame- ters	page 4-74
	1600 _{hex} to 161F _{hex}	Receive PDO-mapping parameters	page 4-78
	1800 _{hex} to 181F _{hex}	Transmit PDO-parameters	page 4-82
	1A00 _{hex} to 1A1F _{hex}	Transmit PDO-mapping parameters	page 4-88
	1F80 _{hex}	NMT startup	page 4-91
	1F81 _{hex}	Slave assignment	page 4-93
	1F82 _{hex}	Request NMT	page 4-97
	1F83 _{hex}	Request guarding	page 4-100
	Manufac	turer specific objects	
	2000 _{hex}	Serial number	page 4-102
	2010 _{hex}	Behavior Modifiers	page 4-103
	2400 _{hex}	System Voltages	page 4-107
_	2401 _{hex}	System Currents	page 4-108

Table 9: Overview of all objects	Index	Name	Page				
	Objects for BL67 I/O-modules						
	5420 _{hex}	Analog Input Mode	page 4-142				
	5440 _{hex}	Analog Output Mode	page 4-164				
	5801 _{hex}	Encoder config	page 4-182				
	5802 _{hex}	Encoder status	page 4-182				
	5803 _{hex}	Encoder flags	page 4-183				
	5804 _{hex}	Encoder diag	page 4-185				
	5805 _{hex}	SSI Native status	page 4-187				
	5806 _{hex}	SSI Optional encoder	page 4-191				
	5808 _{hex}	Encoder control	page 4-192				
	6000 _{hex}	Read input 8 bit	page 4-117				
	6020 _{hex}	Read input bit 1 to 128	page 4-118				
	6021 _{hex}	Read input bit 129 to 256	page 4-118				
	6022 _{hex}	Read input bit 257 to 288	page 4-118				
	6100 _{hex}	Read input 16 bit	page 4-119				
	6120 _{hex}	Read input 32 bit	page 4-120				
	6200 _{hex}	Write output 8 bit	page 4-123				
	6206 _{hex}	Error mode output 8 bit	page 4-127				
	6207 _{hex}	Error value output 8 bit	page 4-128				
	6220 _{hex} to 6222 _{hex}	Write output bit 1 to 128 to Write output bit 257 to 288	page 4-124				
	6250 _{hex} to 6252 _{hex}	Error mode output Bit 1 to 128 to Error mode output Bit 257 to 288	page 4-129				

Table 9: Overview of all objects	Index	Name	Page
	6260 _{hex} to 6262 _{hex}	Error value output Bit 1 to 128 to Error value output Bit 257 to 288	page 4-131
	6300 _{hex}	Write output 16 bit	page 4-125
	6306 _{hex}	Error mode output 16 bit	page 4-133
	6307 _{hex}	Error value output 16 bit	page 4-134
	6320 _{hex}	Write output 32 bit	page 4-126
	6326 _{hex}	Error mode output 32 bit	page 4-135
	6327 _{hex}	Error value output 32 bit	page 4-136
	6401 _{hex}	Read Analog Input 16 bit	page 4-147
	6411 _{hex}	Write analog Output 16 bit	page 4-160
	6421 _{hex}	Analog input interrupt Trigger Selection	page 4-149
	6422 _{hex}	Analog input interrupt source	page 4-151
	6423 _{hex}	Analog input global interrupt enable	page 4-152
	6424 _{hex}	Analog input interrupt upper limit Integer	page 4-153
	6425 _{hex}	Analog input interrupt lower limit Integer	page 4-154
	6426 _{hex}	Analog input interrupt delta Unsigned	page 4-155
	6427 _{hex}	Analog input interrupt negative delta Unsigned	page 4-156
	6428 _{hex}	Analog input interrupt Positive Delta Unsigned	page 4-157
	6443 _{hex}	Analog output error mode	page 4-160
	6444 _{hex}	Analog output error value Integer	page 4-163
	67FF _{hex}	Device type	page 4-112
	6800 _{hex}	Operating parameters	page 4-195

Table 9: Overview of all objects	Index	Name	Page
	6810 _{hex}	Preset value for multi-sensor devices	page 4-195
	6820 _{hex}	Position value for multi-sensor devices	page 4-196
	6B00 _{hex}	CAM State register	page 4-197
	6B01 _{hex}	CAM Enable register	page 4-198
	6B02 _{hex}	CAM Polarity register	page 4-199
	6B10 _{hex}	CAM1 Low limit	page 4-200
	6B20 _{hex}	CAM1 High limit	page 4-200

Parameter changes that are made through SDO access are only stored in volatile memory. All alterations that are made by the user will be replaced by default values at the next Reset Communication, Reset Node or Power-ON-Boot-Up.

With BL67, it is possible to use a command to make a permanent save of the communication and/or application parameters. This is done through the "Store parameters" command (Object $1010_{hex \ sub-index}$ 1 to 3). The command is executed by using an SDO to write the data contents 0x6576 6173 ("save") to one of the following entries:

- 1010_{hex} sub-index 1 saves all parameters
- 1010_{hex} sub-index 2 saves all communication parameters
- 1010_{hex} sub-index 3 saves all device parameters (see CiA DS-301 V4.01)

Table 10: Data contents 0x6576 6173 ("save")		MSB LSB			
	ASCII	е	V	а	S
	HEX	65 _{hex}	76 _{hex}	61 _{hex}	73 _{hex}

Since in some circumstances it may not be possible to restore the original memory contents after a lot of alterations, BL67 supports the "Restore default Parameter" command (Object 1011_{hex} sub-index 1 to 3) with the following data contents: 0x6461 6F6C ("load").

Table 11: Data contents 0x6461 6F6C ("load")		MSB			LSB	
	ASCII	d	а	0	Ι	
	HEX	64 _{hex}	61 _{hex}	$6F_{hex}$	6C _{hex}	_

The division of the Sub-entries corresponds to that for the "Store parameters" command.

4

TURCK

After the command "Restore default parameters", a Reset Node must be carried out, followed by a "Store parameters" command. The default values are only saved again when this last command is executed.

Objects for the Communication Profile

The following table provides an overview of the supported entries in the Object Dictionary which are defined by the Communication Profile CiA DS-301:

The column **Index (**_{hex}**)** describes the position of the entry in the Object Dictionary.

The column **Object** shows the Type of the object.

The column **Name** shows a predefined symbolic name for the entry.

The column **Type** shows the data type for the entry, as defined by CiA DS-301.

The column **Access** shows the access options for the entry. These are:

- rw (read/write)
- ro (read only)
- const (constant) = a read-only constant

The column **M/O** shows whether the entry is mandatory or optional.

Table 12: Object overview for the communi- cation profile	Index (_{hex})	Object	Name	Туре	Access	М/О
	1000 _{hex}	VAR	Device type (page 4-46)	Unsigned32	const	М
	1001 _{hex}	ARRAY	Error register (page 4-47)	Unsigned8	ro	М
	1005 _{hex}	VAR	SYNC COB-ID (page 4-48)	Unsigned32	rw	0
	1008 _{hex}	VAR	Device name (page 4-50)	Vis-String	const	0
	1009 _{hex}	VAR	Manufacturer hardware version (page 4-51)	Vis-String	const	0

Table 12: Object overview for the communi- cation profile	Index (_{hex})	Object	Name	Туре	Access	М/О
	100A _{hex}	VAR	Manufacturer software version (page 4-52)	Vis-String	const	0
	100C _{hex}	VAR	Guard time (page 4-52)	Unsigned32	rw	0
	100D _{hex}	VAR	Lifetime factor (page 4-54)	Unsigned32	rw	0
	1010 _{hex}	ARRAY	Store parameters (page 4-55)	Unsigned32	rw	0
	1011 _{hex}	ARRAY	Restore default parameters (page 4-57)	Unsigned32	rw	0
	1014 _{hex}	VAR	Emcy COB-ID (page 4-59)	Unsigned32	rw	0
	1016 _{hex}	ARRAY	Consumer heartbeat time (page 4-61)	Unsigned32	rw	0
	1017 _{hex}	VAR	Producer heartbeat time (page 4-63)	Unsigned16	rw	0
	1018 _{hex}	RECORD	ldentity object (page 4-64)	Identity	ro	0
	1020 _{hex}	ARRAY	Verify configuration (page 4-67)	Unsigned32	rw	0
	1027 _{hex}	ARRAY	Module list (page 4-69)	Unsigned16	ro	М

Table 12: Object overview for the communi- cation profile	Index (_{hex})	Object	Name	Туре	Access	м/о		
	Server	SDO parai	neter					
	1200 _{hex}	RECORD	1st Server SDO parameter (page 4-71)	SDO parameter	ro	0		
	1201 _{hex}	RECORD	2nd Server SDO parameter (page 4-71)	SDO parameter	rw	0		
	1202 _{hex}	RECORD	3rd Server SDO parameter (page 4-71)	SDO parameter	rw	0		
	1203 _{hex}	RECORD	4th Server SDO parameter (page 4-71)	SDO parameter	rw	0		
	Receive PDO communication parameter							
	1400 _{hex}	RECORD	1st receive PDO parameter (page 4-74)	PDO CommPar	rw	0		
	1401 _{hex}	RECORD	2nd receive PDO parameter (page 4-74)	PDO CommPar	rw	0		
	1402 _{hex}	RECORD	3rd receive PDO parameter (page 4-74)	PDO CommPar	rw	0		
	141F _{hex}	RECORD	32nd receive PDO parameter (page 4-74)	PDO CommPar	rw	0		

Table 12: Object overview for the communi- cation profile	Index (_{hex})	Object	Name	Туре	Access	М/О			
	Receive PDO-mapping parameter								
	1600 _{hex}	ARRAY	1st receive PDO-mapping (page 4-78)	PDO mapping	rw	0			
	1601 _{hex}	ARRAY	2nd receive PDO-mapping (page 4-78)	PDO mapping	rw	0			
	1602 _{hex}	ARRAY	3rd receive PDO-mapping (page 4-78)	PDO mapping	rw	0			
	161F _{hex}	ARRAY	32nd receive PDO-mapping (page 4-78)	PDO mapping	rw	0			
	Transmit PDO communication parameter								
	1800 _{hex}	RECORD	1st transmit PDO parameter (page 4-82)	PDO CommPar	rw	0			
	1801 _{hex}	RECORD	2nd transmit PDO parameter (page 4-82)	PDO CommPar	rw	0			
	1802 _{hex}	RECORD	3rd transmit PDO parameter (page 4-82)	PDO CommPar	rw	0			
	181F _{hex}	RECORD	32nd transmit PDO parameter (page 4-82)	PDO CommPar	rw	0			

4

Table 12: Object overview for the communi- cation profile	Index (_{hex})	Object	Name	Туре	Access	М/О		
	Transmit PDO-mapping parameter							
	1A00 _{hex}	ARRAY	1nd transmit PDO-mapping (page 4-88)	PDO mapping	rw	0		
	1A01 _{hex}	ARRAY	2nd transmit PDO-mapping (page 4-88)	PDO mapping	rw	0		
	1A02 _{hex}	ARRAY	3rd transmit PDO-mapping (page 4-88)	PDO mapping	rw	0		
	1A1F _{hex}	ARRAY	32nd transmit PDO mapping (page 4-88)	PDO mapping	rw	0		
	NMT Master related Objects							
	1F80 _{hex}	VAR	NMT startup (page 4-91)	Unsigned32	rw	0		
	1F81 _{hex}	ARRAY	Slave assignment (page 4-93)	Unsigned32	rw	0		
	1F82 _{hex}	ARRAY	Request NMT (page 4-97)	Unsigned8	rw	0		
	1F83 _{hex}	ARRAY	Request guarding (page 4-100)	Unsigned8	rw	0		

Object 1000_{hex} - Device Type

 $\operatorname{Object} 1000_{hex} \operatorname{contains}$ the Type and the Function of the BL67 station.

The value FFFF 0191_{hex} indicates that all Device Profiles are supported.

Table 13: Object 1000 _{hex}	Object description	I
	INDEX	1000 _{hex}
	Name	Device type
	Object code	VAR
	Data Type	Unsigned32
	Value range	
	Access	ro
	PDO-mapping	No
	Value range	Unsigned32
	Default value, BL67	FFFF 0191 _{hex}

Object 1001_{hex} - Error Register

Object 1001_{hex} contains the Error register for the BL67-CANopen gateway. It thus contains, in one byte, the internal errors that occur.

Table 14: Object 1001 _{hex}	Object description	
	INDEX	1001 _{hex}
	Name	Error register
	Object code	VAR
	Data Type	Unsigned8
	Value range	
	Access	ro
	PDO-mapping	Optional
	Value range	Unsigned8
	Default value, BL67	00 _{hex}

Error register

Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
generic	current	voltage	0	Comm.	0	0	Manu.

Abbreviations:

Meaning	Valid for Modules
General error	all
Output short-circuit/ Current error	DO, AI,TC
Voltage error	PF, DO, AI, AO
Communication error	all
Manufacturer-specific error	all
	General error Output short-circuit/ Current error Voltage error Communication error Manufacturer-specific

Object 1005_{hex} - SYNC COB-ID

Object 1005_{hex} defines the COB-ID for the Synchronization Object (SYNC). The BL67-CANopen gateway not generate SYNC messages, only receive them.

Structure of the SYNC COB-ID entry (Unsigned32):

	MS	SB			LSB
Bits	31	30	29	28 to 11	10 to 0
11-bit ID	×	0	0	00 0000 0000 0000 0000	11-bit identifier
29-bit ID	×	0	1	29-bit identifier	
Table 15: Description o SYNC COB-li entry		Bit number	Value	Description	
		31 (MSB)	Х	fixed	
		30	0 1	Module does not generate a SYNC message Module generates a SYNC message	
		29	0 1	11-bit ID (CAN 2.0A) 29-bit ID (CAN 2.0B)	
		28 to 11	0 X	if Bit 29=0 if Bit 29=1: Bits 28 to 11 of t	he SYNC-COB-ID
		10 to 0 (LSB)	х	Bit 10 to 0 of the SYNC-CO	B-ID

Note

Bit 30 is static, i.e. cannot be changed.

TU	RCK	
		I

Table 16: Object 1005 _{hex}	Object description	
	INDEX	1005 _{hex}
	Name	COB-ID Sync
	Object code	VAR
	Data Type	Unsigned32
	Value range	
	Access	rw
	PDO-mapping	No
	Value range	Unsigned32
	Default value, BL67	0000 0080h

Object 1008_{hex} - Device Name

Object 1008_{hex} contains the manufacturer-specific device name

Table 17: Object 1008 _{hex}	Object description			
	INDEX	1008 _{hex}		
	Name	Device name from the manufacturer		
	Object code	VAR		
	Data Type	Visible String		
	Value range			
	Access	const.		
	PDO-mapping	No		
	Value range, BL67	-		
	Default value, BL67	BL67-GW-CO		

Object 1009_{hex} - Manufacturer Hardware Version

Object 1009_{hex} contains the designation for the Hardware Version.

Table 18: Object 1009 _{hex}	Object description	
	INDEX	1009 _{hex}
	Name	Hardware version
	Object code	VAR
	Data Type	Visible String
	Value range	
	Access	const.
	PDO-mapping	No
	Value range, BL67	-
	Default value, BL67	X/01

Object 100A_{hex} - Manufacturer Software Version

Object 100A_{hex} contains the designation for the software version.

Table 19: Object 100A _{hex}	Object description	I
	INDEX	100A _{hex}
	Name	software version
	Object code	VAR
	Data Type	Visible String
	Value range	
	Access	const.
	PDO-mapping	No
	Value range, BL67	-
	Default value, BL67	1.01

Note

The value description corresponds to the state as delivered at the time this manual was printed.

Object 100C_{hex} - Guard Time

 $\rm Object~100C_{hex}$ contains the Guard time in ms. The product of "Lifetime factor" (Object~100D_{hex}) and Guard time is the "Lifetime" for Node Guarding.

Table 20: Object 100C _{hex}	Object description	
	INDEX	100C _{hex}
	Name	Guard time
	Object code	VAR
	Data Type	Unsigned16

TU	RCK	

Value range		
rw		
No		
Unsigned16		
0		

4

Object 100D_{hex} - Lifetime Factor

If the Lifetime factor is multiplied by the Guard time, the result is the Lifetime for Node Guarding.

Example:

Guard time: 100 ms

Lifetime factor: 3

The Guard time of 100 ms means that the network nodes expect a Guard Frame from the master every 100 ms. The Lifetime factor enables a setting to be made in the BL67-CANopen gateway for how often a Guard Frame from the Master can be missed before an error condition is recognized.

In this example, the relevant time would be 300 ms. The evaluation would only become active after the message had been missing for 300 ms.

Table 21: Object 100D _{hex}	Object description			
	INDEX	100D _{hex}		
	Name	Lifetime factor		
	Object code	VAR		
	Data Type	Unsigned8		
	Value range			
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned8		
	Default value, BL67	0		

Object 1010_{hex} - Store Parameters

The object 1010_{hex} can be used to save parameter changes in non-volatile memory. The command is executed by writing the data contents 0x6576 6173 ("save") to one of the Sub-indices.

Table 22: Object 1010 _{hex}	Object description		
	INDEX	1010 _{hex}	
	Name	Store parameters	
	Object code	3 _{hex}	
	Data Type	Unsigned32	
	Value description		
	Sub-index	00 _{hex}	
	Description	highest supported sub-index	
	Access	ro	
	PDO-mapping	No	
	Sub-index	01 _{hex}	
	Description	Save all parameters	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	1 _{hex}	

Table 22: Object 1010 _{hex}	Object description Value description		
	Description	Save communication parameters	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	1 _{hex}	
	Sub-index	03 _{hex}	
	Description	Save application parameters	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	1 _{hex}	

Object 1011_{hex} - Restore Default Parameters

Object 1011_{hex} can be used to restore the default parameters. The command is executed by writing the data contents 0x6461 6F6C ("load") to one of the Sub-indices.

Table 23: Object 1011 _{hex}	Object description			
	INDEX	1011 _{hex}		
	Name	Restore default parameters		
	Object code	ARRAY		
	Data Type	3 _{hex}		
	Value description			
	Sub-index	00 _{hex}		
	Description	Highest supported sub-index		
	Access	ro		
	PDO-mapping	No		
	Sub-index	01 _{hex}		
	Description	Restore all parameters		
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned32		
	Default value, BL67	1 _{hex}		

Table 23: Object 1011 _{hex}	Object description			
	Value description			
	Sub-index	02 _{hex}		
	Description	Restore communication parameters		
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned32		
	Default value, BL67	1 _{hex}		
	Sub-index	03 _{hex}		
	Description	Restore application parameters		
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned32		
	Default value, BL67	1 _{hex}		

Object 1014_{hex} - Emcy COB-ID

Object 1014_{hex} contains the Identifier for the emergency messages.

	MSB			LSB	
Bits	31	30	29	28 to 11	10 to 0
11-bit ID	0/1	0	0	00 0000 0000 0000 0000	11-bit identifier
29-bit ID	0/1	0	1	29-bit identifier	

Table 24: Description of the SYNC COB-ID entry	Bit number	Value	Description
	31 (MSB)	0 1	EMCY exists/ is valid EMCY does not exist/ is not valid
	30	0	reserved (always 0)
	29	0 1	11-bit ID (CAN 2.0A) 29-bit ID (CAN 2.0B)
	28 to 11	0 X	if bit 29=0 if bit 29=1: bits 28 to 11 of 29-bit-COB-ID
	10 to 0 (LSB)	х	Bit 10 to 0 of COB-ID

Note

Bit 30 is static, i.e. cannot be changed.

Table 25:	
Object 1014	1 _{hex}

Object description

INDEX	1014 _{hex}	
Name	Emcy COB-ID	
Object code	VAR	
Data Type	Unsigned32	

Table 25: Object 1014 _{hex}	Object description				
	Value description				
	Access	rw			
	PDO-mapping	No			
	Value range, BL67	Unsigned32			
	Default value, BL67	0000 0080 _{hex} + Node-ID			

Object 1016_{hex} - **Consumer Heartbeat Time**

The Heartbeat Protocol is used to monitor the operational capability of other CANopen bus nodes. The Heartbeat Protocol must be seen as an alternative to Node-/Life-Guarding, which, unlike Guarding, does not use Remote-Frames.

A device generates the Heartbeat with a specific cycle time (see object 1017_{hex} "Producer heartbeat time"). Another device receives the Heartbeat and monitors the cycle time.

Object 1016_{hex} defines the cycle time (interval) at which the Heartbeat is expected. This cycle time should be longer than the corresponding cycle time for the transmitter (see object 1017_{hex}). The monitoring of the Heartbeat starts when the first Heartbeat Frame is received. If the Consumer heartbeat time = 0, then the corresponding entry will not be used. The time is set as a multiple of 1 ms.

Structure of the entry for Consumer heartbeat time (Unsigned32):

	MSB				
Bits	31 to 24	23 to 16	15 to 0		
Value	reserved (default: 00 _{hex})	Node-ID	Heartbeat Time		
Data Type	_	Unsigned8	Unsigned16		

Table 26: **Object description** Object 1016_{hex} INDEX 1016_{hev} Name Consumer heartbeat time Object code ARRAY Data Type Unsigned32 Value description 00_{hex} Sub-index Number of entries Description Category Mandatory

ro

Access

Table 26: Object 1016 _{hex}	Object description	
	PDO-mapping	No
	Value range, BL67	1
	Default value, BL67	1
	Sub-index	01 _{hex}
	Description	Consumer heartbeat time
	Category	Mandatory
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned32 (see Table 25)
	Default value, BL67	0

Object 1017_{hex} - Producer Heartbeat Time

The object 1017_{hex} defines the cycle time for the Heartbeat of the generating device. If the cycle time = 0, then Heartbeat will not be used. The content of the object is interpreted as a multiple of 1 ms.

Table 27: Object 1017 _{hex}	Object description	
	INDEX	1017 _{hex}
	Name	Producer heartbeat time
	Object code	VAR
	Data Type	Unsigned16
	Value description	
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned16
	Default value, BL67	0

4

Object code

Value description

Data Type

Sub-index

Access

Description Category

PDO-mapping

Default value, BL67 4

Object 1018_{hex} - Identity Object

Object 1018_{hex} contains general information about the BL67 gateway.

The Vendor-ID (Sub-index 01_{hex}) is a unique ID which precisely identifies the manufacturer. The manufacturer-specific Product-Code (Sub-index 02_{hex}) identifies a specific device version. The manufacturer-specific Revision-Number (Sub-index 03_{hex}) consists of a major revision number and a minor revision number. The major revision number defines a special CANopen functionality. If the CANopen functionality is expanded, then the major revision number must be incremented. The minor revision number identifies various versions that have the same CANopen functionality.

	MSB		LSB
Bits	31 to 16	15 to 0	
Value	Major revision num	per minor revision number	
Table 28: Object 1018 _{hex}	Object descrip	tion	
	INDEX	1018 _{hex}	
	Name	Device specification	

RECORD

Identity

00_{hex}

ro

No

Number of entries

Mandatory

TURCK

Table 28: Object 1018 _{hex}	Object description		
	Sub-index	01 _{hex}	
	Description	Manufacturer-ID	
	Category	Mandatory	
	Access	ro	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	0000 0003 _{hex}	
	Sub-index	02 _{hex}	
	Description	Product Code	
	Category	Option	
	Access	ro	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	6827200	
	Value description		
	Sub-index	03 _{hex}	
	Description	Revision-Number	
	Category	Option	
	Access	ro	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	

Table 28: Object 1018 _{hex}	Object description	
	Sub-index	04 _{hex}
	Description	Serial number
	Category	Option
	Access	ro
	PDO-mapping	No
	Value range, BL67	Unsigned32
	Default value, BL67	6827200

Object 1020_{hex} - Verify Configuration

Object 1020_{hex} is used to check the station configuration after a device reset.

The BL67-CANopen gateway supports the non-volatile storage of parameters. A network configuration tool or an CANopen Manager can use object 1020_{hex} to test the station configuration after a reset, and so check whether a reconfiguration is necessary. The configuration tool saves the time and date simultaneously in object 1020_{hex} and the corresponding DCF file. After a reset, the most recent configuration and the signature will be restored, either automatically on request. If the configuration values are altered by some other command, then the object will be set to 0.

The Configuration Manager compares the signature and the configuration with the values from the DCF file. If it discovers any deviations, a reconfiguration will be necessary.

Table 29: Object 1020 _{hex}	Object description				
	INDEX	1020 _{hex}			
	Name	Testing the station configuration			
	Object code	ARRAY			
	Data Type	Unsigned16			
	Value description				
	Sub-index	00 _{hex}			
	Description	Number of entries			
	Access	rw			
	PDO-mapping	No			
	Default value, BL67	02 _{hex}			

Table 29: Object 1020 _{hex}	Object description		
	Sub-index	01 _{hex}	
	Description	Configuration date	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	
	Sub-index	02 _{hex}	
	Description	Configuration time	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	

Note

The configuration date contains the number of days since January 01 1984.

The configuration time contains the number of milliseconds since midnight.

Object 1027_{hex} - Module List

Object 1027_{hex} describes all the actually installed modules in an BL67 station.

Table 30: Object 1027 _{hex}	Object description				
	INDEX	1027 _{hex}			
	Name	Module list			
	Object code	ARRAY			
	Data Type	Unsigned16			
	Access	ro			
	Value description				
	Sub-index	00 _{hex}			
	Description	Number of modules connected			
	Access	ro			
	PDO-mapping	No			
	Value range, BL67	00 _{hex} to 4A _{hex}			
	Default value, BL67	No			
	Sub-index	01 _{hex}			
	Description	Module 1			
	Access	ro			
	PDO-mapping	No			
	Value range, BL67	Unsigned16			
	Default value, BL67	No			

Table 30: Object 1027 _{hex}	Object description	
	Sub-index	4A _{hex}
	Description	Module 74
	Access	ro
	PDO-mapping	No
	Value range, BL67	Unsigned16
	Default value, BL67	No

The sequential Sub-indices 01_{hex} to $4A_{hex}$ describe the corresponding BL67 modules in the sequence in which they are installed in the BL67 station. Each entry contains a number that identifies the particular module.

Note

There is one identifier for each type of BL67 module.

In the EDS-file, the individual extensions to object 1027_{hex} for all the optional BL67 module types are listed in the section [Supported Modules]. The default values correspond to the identifiers for the particular module types.

Objects for the Transfer of Service Data

Object 1200_{hex} to 1203_{hex} - Server SDO Default Parameters

Objects 1200_{hex} to 1203_{hex} contain the parameters for the SDOs.

Table 31: Object 1200 _{hex} to 1203 _{hex}	Object description				
	INDEX	1200 _{hex} to 1203 _{hex}			
	Name	Server SDO-parameters			
	Object code	RECORD			
	Number of Elements	3 _{hex}			
	Data Type	SDO-parameters			
	Value description				
	Sub-index	00 _{hex}			
	Description	Number of entries			
	Access	ro			
	PDO-mapping	No			
	Default value, BL67	02 _{hex}			
	Sub-index	01 _{hex}			
	Description	COB-ID Client > Server (rx)			
	Access	Index 1200 _{hex} :ro Index 1201 _{hex} to 1203 _{hex} :rw			
	PDO-mapping	No			
	Value range, BL67	Unsigned32			
	Default value, BL67	Index 1200 _{hex} : 0000 0600 _{hex} + Node-ID Index 1201 _{hex} to 1203 _{hex} :No			

Table 31: Object 1200 _{hex} to 1203 _{hex}	Object description	
	Sub-index	02 _{hex}
	Description	COB-ID Server > Client (rx)
	Access	Index 1200 _{hex} :ro Index 1201 _{hex} to 1203 _{hex} :rw
	PDO-mapping	No
	Value range, BL67	Unsigned32
	Default value, BL67	Index 1200 _{hex} : 0000 0580 _{hex} + Node-ID Index 1201 _{hex} to 1203 _{hex} :No

Objects for the Transfer of Process Output Data

The objects 1400_{hex} to $141F_{hex}$ define, together with objects 1600_{hex} to $161F_{hex}$, which output data have to be transferred via RPDO. In addition to that, the priority and the transmission type for the RPDO-transfer are defined.

Object 1400_{hex} defines the priority and the transmission type for the RPDO1. object 1600_{hex} defines the object-index, the sub-index and the data length for the data which have to be transferred via RPDO1.

Objects 1401_{hex} and 1601_{hex} thus define the RPDO2, objects 1402_{hex} and 1602_{hex} define RPDO3, etc.

Object 1400_{hex} to $141F_{\text{hex}}$ - Receive PDO Comm. Default Parameters

Objects 1400_{hex} to $141F_{hex}$ define the priority and the transmission type or RPDO1 to RPDO32.

The priority is defined via the identifier/COB-ID (see "Identifier for the Standard Objects", page 4-9) in sub-index 01_{hex} . With the highest bit of sub-index 01hex, the further content can be defined as valid/invalid.

Sub-index 02_{hex} defines the transmission-type.

Table 32: Object 1400 _{hex} to 141F _{hex}	Object description				
	INDEX	1400 _{hex} to 141F _{hex}			
	Name	Receive PDO parameters			
	Object code	RECORD			
	Data Type	PDO CommPar			
	Value description				
	Sub-index	00 _{hex}			
	Description	maximum number of entries			
	Access	ro			
	PDO-mapping	No			
	Value range, BL67	2			
	Default value, BL67	02 _{hex}			
	Sub-index	01 _{hex}			
	Description	COB-ID for the PDOs (see Table 33:)			
	Access	rw			
	PDO-mapping	No			

Table 32: Object 1400 _{hex} to 141F _{hex}	Object description					
	Value range, BL67	Unsigned32				
	Default value, BL67	$\begin{array}{l} - \mbox{ Index } 1400_{\mbox{hex}} \hfill : \\ 0000 \ 0200_{\mbox{hex}} + \mbox{ Node-ID} \\ - \mbox{ Index } 1401_{\mbox{hex}} \hfill : \\ 0000 \ 0300_{\mbox{hex}} + \mbox{ Node-ID} \\ - \mbox{ Index } 1402_{\mbox{hex}} \hfill : \\ 0000 \ 0400_{\mbox{hex}} + \mbox{ Node-ID} \\ - \mbox{ Index } 1403_{\mbox{hex}} \hfill : \\ 0000 \ 0500_{\mbox{hex}} + \mbox{ Node-ID} \\ - \mbox{ Index } 1404_{\mbox{hex}} \hfill to 141F_{\mbox{hex}} \hfill : \mbox{ blocked} \end{array}$				
	Sub-index	02 _{hex}				
	Description	Transmission type (see Table 34:)				
	Access	rw				
	PDO-mapping	No				
	Value range, BL67	Unsigned8				
	Default value, BL67	FF _{hex}				

Structure of the COB-ID entry:

	MSB LS				LSB
Bits	31	30	29	28 to 11	10 to 0
11-bit ID	0/1	0/1	0	00 0000 0000 0000 0000	11-bit identifier
29-bit ID	0/1	0/1	1	29-bit identifier	

Table 33: Description of the COB-ID entry	Bit number	Value	Meaning
	31 (msb)	0	PDO exists / is valid
		1	PDO does not exist / is invalid
	30	0	RTR is possible in this PDO
		1	RTR is not possible in this PDO
	29	0	11-bit-ID (CAN 2.0A) (Standard appli- cation)
		1	29-bit-ID (CAN 2.0B)
	28 to 11	0	if bit 29=0 (Standard application)
		х	if bit 29=1: bits 28 to 11 of COB-ID
	10 to 0 (Isb)	х	Bit 10 to 0 of COB-ID

The Transmission type (Sub-index $\mathrm{02}_{\mathrm{hex}}\!)$ can have the following values:

Table 34: Description of the Transmission type	Transmis- sion type	PDO transmission				
		cyclic	acyclic	synchr.	asynchr.	only with RTR
	0		×	×		
	1	×		×		
	2 to 254	reserved				
	255				×	

Object 1600_{hex} to 161F_{hex} - Receive PDO-Mapping Parameter

Objects 1600_{hex} to $161F_{hex}$ define, which data have to be transferred with RPDO1 to RPDO32.

The data content (here: process output data) is represented by product specific mappable objects.

 \rightarrow "Mappable Objects", page 4-31.

For example, the process output data for the digital channels are entered in objects 6200_{hex} , 6220_{hex} etc.

The description of these objects can be found in section "I/O-Module Objects", page 4-109 ff.

Sub-indices 01_{hex} to 40_{hex} of the objects 1600_{hex} to $161F_{hex}$ contain the object number, the sub-index and the length of the data that have to be transferred via the respective RPDO.

An RPDO can transfer a maximum number of 8 bytes (64 bit).

Objects 1600_{hex} to 1603_{hex} (RPDO1 to RPDO4) references by default the values for the first 64 digital output channels and for the first 12 analog output channels, provided that the values are represented by the objects 6200_{hex} (digital values) and 6411_{hex} (analog values).

INDEX	1600 _{hex} to 161F _{hex}
Name	Receive PDO-mapping parameter
Object code	RECORD
Data Type	PDO-mapping
Value description	
Sub-index	00 _{hex}
Description	highest sub-index used
Access	rw
PDO-mapping	No
Value range, BL67	0 to 64

Table 35: **Object description** Object 1600_{hex} to 161F_{hex}

TURCK

4

Table 35: Object 1600 _{hex} to 161F _{hex}	Object description			
	Default value, BL67	see Table 12:		
	Sub-index	01 _{hex}		
	Description	1st mapping object		
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned32		
	Default value, BL67	see Table 12:		
	Sub-index	40 _{hex}		
	Description	64th mapping object		
	Access	rw		
	PDO-mapping	No		
	Value range, BL67	Unsigned32		
	Default value, BL67	No		

Note

The number of mapping objects, which are automatically generated by the gateway during start-up, depends on the actual physical structure of the BL67-station.

Table 36: Possible default values for objects 1600 _{hex} to 1603 _{hex}	Object		Default value,BL67	Description	applies to
	1600 _{hex}	01 _{hex}	6200 0108 _{hex}	1st mapping object (digital output)	RPDO1
		08 _{hex}	6200 0808 _{hex}	8th mapping object (digital output)	
	1601 _{hex}	01 _{hex}	6411 0110 _{hex}	1st mapping object (analog output)	RPDO2
		04 _{hex}	6411 0410 _{hex}	4th mapping object (analog output)	
	1602 _{hex}	01 _{hex}	6411 0510 _{hex}	1st mapping object (analog output)	RPDO3
		04 _{hex}	6411 0810 _{hex}	4th mapping object (analog output)	
	1603 _{hex}	01 _{hex}	6411 0910 _{hex}	1st mapping object (analog output)	RPDO4
		04 _{hex}	6411 0C10 _{hex}	4th mapping object (analog output)	

Possible default values for objects 1600_{hex} to 1603_{hex}:

Structure of the PDO-mapping entries:

MSB		LSB
Index (16 bit)	Sub-index (8 bit)	Object Length (8 bit)

Note

To change the number of mapping entries, follow the instructions in Section "Procedure for Altering PDO-Mappings".

Objects for the Transfer of Process Input data

Objects 1800_{hex} to $181F_{hex}$ define, together with objects $1A00_{hex}$ to $1A1F_{hex}$, which input data are transferred. Additionally they define the priority and the mode for the data transfer via TPDO.

Object 1800_{hex} defines the priority, the minimum inhibit time, the event timer and the transmission type for TPDO1. object $1A00_{hex}$ defines the object-index, the sub-index and the data length for the data which have to be transferred via TPDO1.

Objects 1801_{hex} and $1A01_{hex}$ thus define the TPDO2, objects 1802_{hex} and $1A02_{hex}$ define RPDO3, etc..

Object 1800_{hex} to 181F_{hex} - Transmit PDO-Parameters

Objects 1800_{hex} to $181F_{hex}$ define the priority, the transmission type, the inhibit time and the event timer for TPDO1 to TPDO32.

The priority is defined via the identifier/COB-ID (see "Identifier for the Standard Objects", page 4-9) in sub-index 01_{hex} . With the highest bit of sub-index 01_{hex} , the further content can be defined as valid/invalid.

The transmission type is defined in sub-index 02hex. Possible transmission type can be found in Table 39:.

The inhibit time is defined in sub-index 03_{hex}.

The event timer is defined in sub-index 05_{hex}.

Table 37: Object 1800_{hex} to 181F_{hex}

Object description

INDEX	1800 _{hex} to 181F _{hex}
Name	Transmit PDO-parameters
Object code	RECORD
Data Type	PDO CommPar

Table 37:	Object description
Object 1800 _{hex} to	
181F _{hex}	

Value description			
Sub-index	00 _{hex}		
Description	highest sub-index used		
Access	ro		
PDO-mapping	No		
Value range, BL67	5		
Default value, BL67	No		
Sub-index	01 _{hex}		
Description	COB-ID of the PDO		
Access	rw		
PDO-mapping	No		
Value range, BL67	Unsigned32		
Default value, BL67	 Index 1800_{hex}: 0000 0180_{hex} + Node-ID Index 1801_{hex}: 0000 0280_{hex} + Node-ID Index 1802_{hex}: 0000 0380_{hex} + Node-ID Index 1803_{hex}: 0000 0480_{hex} + Node-ID Index 1804_{hex} + Node-ID Index 1804_{hex} to 181F_{hex}: invalid 		

Table 37: Object 1800 _{hex} to 181F _{hex}	Object description					
	Value description					
	Sub-index	02 _{hex}				
	- Description	Transmission type				
	– Access	rw				
	– PDO-mapping	No				
	– Value range, BL67	Unsigned8 7 FFh 03 _{hex}				
	– Default value, BL67					
	Sub-index					
	Description	Inhibit time				
	Access	rw				
	PDO-mapping	No				
	Value range, BL67	Unsigned16				
	Default value, BL67	0				
	Sub-index	04 _{hex}				
	Description	reserved				

TURCK

Table 37: Object 1800 _{hex} to 181F _{hex}	Object description				
	Value description				
	Sub-index	05 _{hex}			
	Description	Event timer			
	Access	rw			
	PDO-mapping	No			
	Value range, BL67	Unsigned16 (0 is not used)			
	Default value, BL67	0			

The COB-ID (Sub-index 01_{hex}) shows the following structure:

	MSB	LSB			
Bits	31	30	29	28 to 11	10 to 0
11-bit ID	0/1	0/1	0	00 0000 0000 0000 0000	11-bit identifier
29-bit ID	0/1	0/1	1	29-bit identifier	

4

Table 38: Description of the COB-ID entry (Sub-index 01 _{hex})	Bit number	Value	Description
	31 (MSB)	0	PDO exists/is valid
		1	PDO does not exist/is invalid
	30	0	RTR is possible with this PDO
		1	RTR is not possible with this PDO
	29	0	11-bit ID (CAN 2.0A)
		1	29-bit ID (CAN 2.0B)
	28 to 11	0	if bit 29=0
		Х	if bit 29=1: bits 28 to 11 of the COB-ID
	10 to 0 (LSB)	х	Bit 10 to 0 of the COB-ID

The Transmission type (Sub-index $\mathrm{02}_{\mathrm{hex}}\!)$ can have the following values:

Table 39: Transmission type of BL67		PDO transmission				
		cyclic	acyclic	synchr.	asynchr.	only with RTR
	0		×	×		
	1	×		×		
	2 to 252			reserved		
	253				×	×
	254			reserved		
	255				×	

Inhibit time

The setting of an Inhibit time for the PDOs (Object 1800_{hex} ff, Sub-Index 03hex) is only supported for TPDOs. Unlike the other time values, which are given as multiples of 1 ms, the Inhibit time is defined as a multiple of 100 ms. However, since the time resolution of the system clock in the BL67-CANopen gateway is 1 ms, Inhibit time values below 10 x 100 ms are pointless.

Event timer

The Event timer (Object 1800_{hex} ff, Sub-Index 05_{hex}) defines the maximum interval after which a TPDO will be transmitted, even though no event has occurred. This means that the Event timer determines the maximum interval between two transmissions of a TPDO.

The expiry of the interval set for the Event timer is detected as an event. If any other event occurs, the Event timer is reset and restarted.

The value of the object is interpreted as a multiple of 1 ms.

Object 1A00_{hex} to **1A1Fh - Transmit PDO-Mapping Param.**

Objects $1A00_{\rm hex}$ to $1A1F_{\rm hex}$ define, which data have to be transferred with TPDO1 to TPDO32.

The data content (here: process input data) is represented by product specific mappable objects.

 \rightarrow "Mappable Objects", page 4-31.

For example, the process input data for the digital channels are entered in objects 6000_{hex} , 6020_{hex} etc.

The description of these objects can be found in section "I/O-Module Objects", page 4-109 ff..

Sub-indices 01_{hex} to 40_{hex} of the objects $1A00_{hex}$ to $1A1F_{hex}$ contain the object number, the sub-index and the length of the data that have to be transferred via the respective TPDO.

An TPDO can transfer a maximum number of 8 bytes (64 bit).

Objects $1A00_{hex}$ to $1A03_{hex}$ (TPDO1 to TPDO4) references by default the values for the first 64 digital output channels and for the first 12 analog output channels, provided that the values are represented by the objects 6000_{hex} (digital values) and 6401_{hex} (analog values).

Table 40: Object 1A00 _{hex} to 1A1F _{hex}	Object description	
	INDEX	1A00 _{hex} to 1A1Fh
	Name	Transmit PDO-mapping parameters
	Object code	RECORD
	Data Type	PDO-mapping

TURCK

Table 40: **Object description** Object 1A00_{hex} to 1A1F_{hex}

Value description	
Sub-index	00 _{hex}
Description	Number of mapped application objects in the PDO
Access	rw
PDO-mapping	No
Value range, BL67	0: deactivate 1 to 64:activated
Default value, BL67	see Table 34:
Sub-index	01 _{hex}
Description	1st mapping object
Access	rw
PDO-mapping	No
Value range, BL67	Unsigned32
Default value, BL67	see page 4-90
ub-index	40 _{hex}
Description	64th mapping object
Access	rw
PDO-mapping	No
Value range, BL67	Unsigned32
Default value, BL67	No

The number of mapping objects, which are automatically generated by the gateway during start-up, depends on the actual physical structure of the BL67-station.

Possible default values for objects 1A00_{hex} to 1A03_{hex}:

Table 41: Possible default values for objects 1A00 _{nex} to 1A03hex	Object	Sub- index	Default value, BL67	Description	applies to
	1A00 _{hex}	01 _{hex}	6000 0108 _{hex}	1st mapping object (digital input)	TPDO1
		08 _{hex}	6000 0808 _{hex}	8th mapping object (digital input)	
	1A01 _{hex}	01 _{hex}	6401 0110 _{hex}	1st mapping object (analog input)	TPDO2
		04 _{hex}	6401 0410 _{hex}	4th mapping object (analog input)	
	1A02 _{hex}	01 _{hex}	6401 0510 _{hex}	1st mapping object (analog input)	TPDO3
		04 _{hex}	6401 0810 _{hex}	4th mapping object (analog input)	
	1A03 _{hex}	01 _{hex}	6401 0910 _{hex}	1st mapping object (analog input)	TPDO4
		04 _{hex}	6401 0C10 _{hex}	4th mapping object (analog input)	

The following structure applies to the parameters for sub-index 01_{hex} to 40_{hex} :

MSB		LSB
Index (16 bit)	Sub-index (8 bit)	Object Length (8 bit)

Note

To change the number of mapping entries, please observe the instructions in the Section "Procedure for altering PDO-mappings" in this chapter.

Objects for Network Management

Objects $1F80_{hex}$ to $1F83_{hex}$ are only relevant, if the BL67-Station is to work as NMT-master. The activation is done via bit0 of object 1F80hex.

Object 1F80_{hex} - NMT Startup

Object $1F80_{hex}$ describes the startup behavior of BL67 in NMT (Network-Management).

Table 42: Object 1F80 _{hex} to 1A1F _{hex}	Object description	
	INDEX	1F80 _{hex}
	Name	NMT startup
	Object code	VAR
	Data Type	Unsigned32
	Access	rw

Table 43: Structure of NMT startup	Bit	Value	Meaning
	0	0	BL67 is not the NMT-Master. All other bits will be ignored. The objects in the network list will be ignored.
		1	BL67 is the NMT-Master
	1	0	Only the explicitly selected slaves will be started.
		1	After boot-up, the service "NMT Start Remote Node All Nodes" will be performed.
	2	0	BL67 moves automatically to the "Operational" state.
		1	BL67 does not move automatically to the "Opera- tional" state. The change of state is decided by the particular application.
	3	0	Starting of the slave is permitted.
		1	Starting of the slave is not permitted.
	4	0	An error event in an obligatory slave deals with the slave individually.
		1	An error event in an obligatory slave triggers an NMT Reset All Nodes (see object 1F81 _{hex} , bit 3).
	5 to 3	1	Reserved; set to 0

Object 1F81_{hex} - Slave Assignment

Object 1F81_{her} describes, as per CiA DSP-302, all the slaves that are coupled to the NMT-Master. It contains information on error control parameters and actions that are triggered by error events. All other parameters for a slave are only valid if this slave is described in object 1F81_{hex}.

Note 1

Object 1F81_{hex} is only valid if the BL67 is defined as the NMT-Master (see object 1F80_{hex}, bit 0).

Table 44: Object 1F81 _{hex}	Object descriptio	n
	INDEX	1F81 _{hex}
	Name	Slave assignment
	Object code	ARRAY
	Data Type	Unsigned32
	Access	rw
	Value description	I
	Sub-index	00 _{hex}
	Description	Maximum number of slaves
	Access	rw
	PDO-mapping	No
	Value range	1 to 127
	Default value	127

BL67 - Communication in CANopen

Table 44: Object 1F81 _{hex}	Object description	
	Sub-index	01 _{hex}
	Description	Slave with Node-ID 1
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned32
	Sub-index	7Fh
	Description	Slave with Node-ID 127
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned32
	Default value, BL67	No

1 Note

Each sub-index corresponds to the slave with the particular Node-ID. The Sub-Index with the Node-ID of the NMT-Master will be ignored.

4

Table 45: Structure of object 1F81 _{hex} Slave assignment	Byte	Bit	Value	Meaning
	0	0	0	The node with this ID is not a slave.
			1	The node with this ID is a slave. After config- uration, the node will be put into the "Opera- tional" state.
		1	0	An error event or other event detection by a slave during boot-up leads to information from the application.
			1	An error event or other event detection by a slave during boot-up leads to information from the application and to automatic start of Error Control Services.
		2	0	An error event or other event detection by a slave during boot-up does not lead to infor- mation from the application or automatic start of Error Control Services.
			1	An error event or other event detection by a slave during boot-up leads to the start of "Start Boot Slaves".
		3	0	Optional Slave: the network can also be started if this node is not connected.
			1	Obligatory slave: the network will not be started if this node is not connected during the slave boot-up.
		4	0	The slave can be reset by the "NMT Reset Communication" command, depending on its state.
			1	The NMT-Master does not have to send an "NMT Reset Communication" command for this slave, if the slave is in the "Operational" state.

BL67 - Communication in CANopen

(download) is not permitted.					
1 Version is not required for this node. 1 Verification of the application software version is required for this node. 6 0 Automatic update of the application software (download) is not permitted. 1 Automatic update of the application software (download) is permitted. 1 Automatic update of the application software (download) is permitted. 7 Reserved; set to 0 1 8 bit value for the Retry Factor	Structure of object 1F81 _{hex}	Byte	Bit	Value	Meaning
6 0 Automatic update of the application software (download) is not permitted. 1 Automatic update of the application software (download) is permitted. 7 Reserved; set to 0 1 8 bit value for the Retry Factor		0	5	0	
1 Automatic update of the application software (download) is not permitted. 1 Automatic update of the application software (download) is permitted. 7 Reserved; set to 0 1 8 bit value for the Retry Factor				1	
(download) is permitted. 7 Reserved; set to 0 1 8 bit value for the Retry Factor			6	0	Automatic update of the application software (download) is not permitted.
1 8 bit value for the Retry Factor				1	Automatic update of the application software (download) is permitted.
·			7		Reserved; set to 0
2 to 3 0 16 bit value for the Guard time		1			8 bit value for the Retry Factor
		2 to 3		0	16 bit value for the Guard time

Object 1F82_{hex} - Request NMT

Object 1F82_{hex} describes, as per CiA DSP-302, all the slaves that can present queries to the Network Management (NMT).

Table 46: Object 1F82 _{hex}	Object description	
	INDEX	1F82 _{hex}
	Name	Query NMT
	Object code	ARRAY
	Data Type	Unsigned8
	Access	ro/rw
	Value description	
	Sub-index	00 _{hex}
	Description	Supported number of slaves
	Access	ro
	PDO-mapping	No
	Value	128
	Sub-index	01 _{hex}
	Description	Request NMT-Service for slave with Node-ID 1
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned8
	Default value, BL67	No

BL67 - Communication in CANopen

Table 46: Object 1F82 _{hex}	Object description	
	Sub-index	7Fh
	Description	Request NMT-Service for slave with Node-ID 127
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned8
	Default value, BL67	No
	Sub-index	80 _{hex}
	Description	Request NMT-Service for all slaves
	Access	wo
	PDO-mapping	No
	Value range, BL67	Unsigned8
	Default value, BL67	No

For a write access to this object, the value corresponds to the state for the node to which the query is directed. For read access, the object contains the present state of the node.

Table 47: Value ranges	Status	Value for write access	Value for read access
	Stopped	4	4
	Operational	5	5
	Reset Node	6	_
	Reset Communica- tion	7	-
	Pre-Operational	127	127

Table 47: Value ranges	Status	Value for write access	Value for read access
	unknown	-	0
_	Node missing	-	1

Object 1F83_{hex} - Request Guarding

Object 1F83_{hex} describes, as per CiA DSP-302, all the slaves that can be monitored through the Network Management (NMT).

Note

Object 1F83_{hex} is only valid if the BL67 is configured as the NMT-Master (see object 1F80_{hex}, bit 0).

Table 48: Object 1F83 _{hex}	Object description	
	INDEX	1F83 _{hex}
	Name	Request guarding
	Object code	ARRAY
	Data Type	Unsigned8
	Access	ro/rw
	Value description	
	Sub-index	00 _{hex}
	Description	Supported number of slaves
	Access	ro
	PDO-mapping	No
	Value	128
	Sub-index	01 _{hex}
	Description	Request guarding for slave with Node-ID 1
	Access	rw
	PDO-mapping	No
	Value range, BL67	Unsigned8
	Access PDO-mapping	Node-ID 1 rw No

Table 48: Object 1F83 _{hex}	Object description	
	Value	0 = Slave being monitored at present 1 = Slave not being monitored at present
	Sub-index	7Fh
	Description	Request guarding for slave with Node-ID 127
	Access	rw
	PDO-mapping	No
	Value range	Unsigned8
	Value	0 Slave being monitored at present 1 Slave not being monitored at present
	Sub-index	80 _{hex}
	Description	Request Start/Stop Guarding for all slaves
	Access	wo
	PDO-mapping	No
	Value range, BL67	Unsigned8
	Default value, BL67	No

Manufacturer Specific Objects

Object 2000_{hex} - Serial Number

Object 2000_{hex} corresponds to the sub-index 04_{hex} of object 1018_{hex} and contains the serial number of the BL67 gateway that is used.

Note

We recommend using object $1018_{\rm hex},$ sub-index $04_{\rm hex}$ for the serial number.

Object 2010_{hex} - **Reset Node Modifiers**

 $\mbox{Object 2010}_{\rm hex}\ \mbox{is used for a temporary (volatile) modification to the module behavior.}$

Table 49: Object 2010 _{hex}	Object description		
	INDEX	2010 _{hex}	
	Name	Reset Node Modifiers	
	Object code	ARRAY	
	Data Type	Unsigned32	
	Value description		
	Sub-index	00 _{hex}	
	Description	Number of entries	
	Access	ro	
	PDO-mapping	No	
	Value range, BL67	Unsigned8	
	Default value, BL67	No	
	Sub-index	01 _{hex}	
	Description	Reset Node Identifier	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	

BL67 - Communication in CANopen

Table 49: Object 2010 _{hex}	Object description		
	Sub-index	02 _{hex}	
	Description	Save reference module list	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	
	Sub-index	03 _{hex}	
	Description	Save current module list	
	Access	rw	
	PDO-mapping	No	
	Value range, BL67	Unsigned32	
	Default value, BL67	No	

The Reset Node Identifier (**Sub-index 01**_{hex}) determines whether, in the event of a Reset Node command, a normal fast reset should be performed, or a hard processor reset, which can take several seconds to be carried out.

For writing, the value that is transferred in Unsigned32 format will be interpreted as a string:

Table 50: Hard Reset (processor reset) selection	MSB			LSB
	t	S	r	h
	74 _{hex}	73 _{hex}	72 _{hex}	68 _{hex}

Table 51: Normal Reset selection	MSB			LSB	
	t	S	r	S	
	74 _{hex}	73 _{hex}	72 _{hex}	73 _{hex}	

After the next Reset-Node or the next "Reset Communication" command, the operating mode will in all cases be reset to "normal Reset Node".

The Index "Save reference module list" (**Sub-index 02**_{hex}) determines that, in the event of a Reset Node command, the BL67 reference module list (Objects 3080_{hex} and 3081_{hex}) will be saved in nonvolatile memory, and then followed by a hard processor reset. This hardware reset is necessary, because changes to the BL67 reference module list cannot be dynamically accepted in the CANopen I/O mirror. If the module list is altered, all the CANopen parameters will be reset to the default values.

For writing, the value that is transferred in Unsigned32 format will be interpreted as a string:

Table 52: Save and Hard- ware-Reset selec- tion	MSB			LSB
	v	а	S	r
	76 _{hex}	61 _{hex}	73 _{hex}	72 _{hex}
Table 53: Normal Reset selection	MSB			LSB
	t	S	r	S
	74 _{hex}	73 _{hex}	72 _{hex}	73 _{hex}

After the next Reset-Node or the next "Reset Communication" command, the operating mode will in all cases be reset to "normal Reset Node".

The Index "Save current module list" (**Sub-index 03**_{hex}) determines that, in the event of a Reset Node command, the present BL67 module list (Objects 3090_{hex} and 3091_{hex}) will be saved in non-volatile memory, and then followed by a hard processor reset. This hardware reset is necessary, because changes to the BL67 reference module list cannot be dynamically accepted in the CANopen I/O mirror. If the module list is altered, all the CANopen parameters will be reset to the default values.

For writing, the value that is transferred in Unsigned32 format will be interpreted as a string:

Table 54: Save and Hard- ware-Reset selec- tion	MSB			LSB
	v	а	S	С
	76 _{hex}	61 _{hex}	73 _{hex}	63 _{hex}
Table 55: Normal Reset selection	MSB			LSB
	t	S	r	S
	74 _{hex}	73 _{hex}	72 _{hex}	73 _{hex}

After the next Reset-Node or the next "Reset Communication" command, the operating mode will in all cases be reset to "normal Reset Node".

Object 2400_{hex} - System Voltages

The object System Voltages allows the reading of up to 4 system voltages from the gateway. At present, the BL67-GW-CO supports reading of U_{sys} to sub-index 1. Sub-indices 2...4 return the constant 0.

Table 56: Object 2400 _{hex}	Object description	n
	INDEX	2400 _{hex}
	Name	System Voltages
	Object code	ARRAY
	No. of Elements	4
	Data Type	Unsigned16
	Access	ro
	Default Value	No
	PDO-mapping	Yes

Object 2401_{hex} - **System Currents**

The object System Currents allows the reading of up to 4 system currents from the gateway.

Table 57: Object 2401 _{hex}	Object descriptio	'n
	INDEX	2401 _{hex}
	Name	System Currents
	Object code	ARRAY
	No. of Elements	4
	Data Type	Unsigned16
	Access	ro
	Default Value	No
	PDO-mapping	Yes

I/O-Module Objects

Overview of the I/O-Module Objects

The following table provides an overview of all the I/O module objects that are supported by the BL67 CANopen gateway.

Table 58: Overview of all BL67 I/O-module objects	Index	Name	Page
	3000 _{hex} to 3097 _{hex}	Manufacturer specific objects for param- eter access for modules which are not defined in the device profile (e.g. digital input modules with parameters, combi modules,).	page 4-195
	5420 _{hex}	Analog input mode (manufacturer specific object)	page 4-117
	5440 _{hex}	Analog output mode (manufacturer specific object)	page 4-117
	5801 _{hex}	Encoder config	page 4-179
	5802 _{hex}	Encoder status	page 4-182
	5803 _{hex}	Encoder flags	page 4-183
	5804 _{hex}	Encoder diag	page 4-185
	5805 _{hex}	SSI Native status	page 4-187
	5806 _{hex}	SSI Optional encoder status	page 4-191
	5808 _{hex}	Encoder control	page 4-192
	5840 _{hex}	SSI Diag mapping	page 4-193
	6000 _{hex}	Read input 8 bit	page 4-117
	6020 _{hex}	Read input bit 1 to 128	page 4-118
	6021 _{hex}	Read input bit 129 to 256	page 4-118
	6022 _{hex}	Read input bit 257 to 288	page 4-118

4

BL67 - Communication in CANopen

Table 58: Overview of all BL67 I/O-module objects	Index	Name	Page
	6100 _{hex}	Read input 16 bit	page 4-119
	6120 _{hex}	Read input 32 bit	page 4-120
	6200 _{hex}	Write output 8 bit	page 4-123
	6206 _{hex}	Error mode output 8 bit	page 4-127
	6207 _{hex}	Error state output 8 bit	page 4-128
	6220 _{hex} to 6222 _{hex}	Write output bit 1 – 128 to Write output bit 257 – 288	page 4-124
	6250 _{hex} to 6252 _{hex}	Error mode output bit 1 – 128 to Error mode output bit 257 – 288	page 4-129
	6260 _{hex} to 6262 _{hex}	Error value output bit 1 – to Error value output bit 257 – 288	page 4-131
	6300 _{hex}	Write output 16 bit	page 4-125
	6306 _{hex}	Error mode output 16 bit	page 4-133
	6307 _{hex}	Error value output 16 bit	page 4-134
	6320 _{hex}	Write output 32 bit	page 4-126
	6326 _{hex}	Error mode output 32 bit	page 4-135
	6327 _{hex}	Error value output 32 bit	page 4-136
	6401 _{hex}	Read analog input 16 bit	page 4-147
	6411 _{hex}	Write analog output 16 bit	page 4-160
	6421 _{hex}	Analog input interrupt trigger selection	page 4-149
	6422 _{hex}	Analog input interrupt source	page 4-151
	6423 _{hex}	Analog input global interrupt enable	page 4-152

Table 58: Overview of all BL67 I/O-module objects	Index	Name	Page
	6424 _{hex}	Analog input interrupt upper limit Integer	page 4-153
	6425 _{hex}	Analog input interrupt lower limit Integer	page 4-154
	6426 _{hex}	Analog input interrupt delta Unsigned	page 4-155
	6427 _{hex}	Analog input interrupt negative delta Unsigned	page 4-156
	6428 _{hex}	Analog input interrupt positive delta Unsigned	page 4-157
	6443 _{hex}	Analog output error mode	page 4-160
	6444 _{hex}	Analog output error value Integer	page 4-163
	$67 \mathrm{FF}_{\mathrm{hex}}$	Device type	page 4-112
	6800 _{hex}	Operating parameters	page 4-195
	6810 _{hex}	Preset value for multi-sensor devices	page 4-195
	6820 _{hex}	Position value for multi-sensor devices	page 4-196
	6B00 _{hex}	CAM State register	page 4-197
	6B10 _{hex}	CAM1 Low limit	page 4-200
	6B20 _{hex}	CAM1 High limit	page 4-200

General I/O-Objects

Object 67FFh - Device Type

The object Device type sends the type of the first supported device profile.

It contains the value 000x0191_{hex}.

The low word (0191_{hex}) specifies the device profile (401 = I/O-modules), the high word (000xh) the I/O-types, see CANopen standard DS401.

Table 59: Object 67FF _{hex}	Feature	Description/ Value
	Name	Device type
	Object code	VAR
	Data Type	Unsigned32
	Access	ro
	Default value	No
	PDO-mapping	No

Objects for Digital Input Modules General Overview for Digital Input Objects

Table 60: General overview for digital output objects	Object	Name	Page
	3064 _{hex}	XBI Param Dword	4-114
	6000 _{hex}	Read input 8 bit	4-117
	6020 _{hex}	Read input 8 bit (1 to 128)	4-118
	6021 _{hex}	Read input 8 bit (129 to 256)	4-118
	6022 _{hex}	Read input 8 bit (257 to 288)	4-118
	6100 _{hex}	Read input 16 bit	4-119
	6120 _{hex}	Read input 32 bit	4-120

The following figure shows the relationship between the digital input objects for an 8-bit access:

Figure 2:

Relationship between the digital input objects

Object 3064_{hex} - XBI Param Dword

The object "XBI Param Dword" Reads the first parameter Dword (Byte 0 to 3) of a module.

Attention

The sub-index corresponds to the slot number of the respective module in a station.

Note

Objects $\rm 3000_{hex}$ to $\rm 3097_{hex}$ enable direct access to the internal module bus of the BL67 station.

Table 61: Object 3064 _{hex}	Feature	Description/ Value
	Name	XBI Param Dword
	Object code	ARRAY
	Data Type	Unsigned32
	Access	rw
	Default value	No
	PDO-mapping	No

The structure of the 4 bytes of parameter data depends on the module concerned. A sub-index is assigned for each Module. The following explains the structure for each module type:

Table 62: Parameter BL67-4DI-PD	Byte	Bit	Parameter	Value/ Meaning
	0	0	Input filter 0	0 = deactivate A
A default setting				1 = activate
		3	Input filter 3	
	1	0	Digital input 0	0 = normal A
				1 = inverted
		3	Digital input 3	
	2	0	Operation Mode Group A	0 = normal A 1 = open-circuit monitoring
		1 Operation Mode Group B		
	3		reserved	

BL67-4DI-PD

TURCK

BL67 - Communication in CANopen

BL67-8DI-PD

Table 63:	Byte	Bit	Parameter	Value/ Meaning
Parameter BL67-8DI-PD	0	0	Input filter 0	0 = deactivate A
A default setting				1 = activate
		7	Input filter 7	
	1	0	Digital input 0	0 = normal A
				— 1 = inverted
		7	Digital input 7	
	2	0	Operation Mode Group A	0 = normal A 1 = open-circuit monitoring
		3	Operation Mode Group D	
	3		reserved	

Object 6000_{hex} - Read Input 8 Bit

The object presents the values for the digital input modules in 8-bit groups. A total of 36 groups (each 8 bit) can be displayed (288 digital input channels).

A PDO-mapping of this object is always made automatically as a default for the first 8 Sub-indices. This corresponds to 64 digital input channels.

If more than 64 input channels are present, then the PDO-mapping must be carried out by the user.

Table 64: Object 6000 _{hex}	Feature	Description/ Value
	Name	Read input 8 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	24 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No

6020_{hex} - Read Input Bit (1 to 128)

6021_{hex} - Read Input Bit(129 to 256)

6022_{hex} - Read Input Bit (257 to 288)

The objects are a bit-wise representation of the values of the digital input modules. Each sub-index for these objects is a Boolean value.

A total of 128 bits can be represented (128 digital input channels).

If more than 128 input channels are present, then object $6021_{\rm hex}\,\rm is$ used.

If more than 256 input channels are present, then object $\mathrm{6022}_{\mathrm{hex}}$ is used.

Since the number of digital input channels in a station is limited to 288, it is not possible to make use of the complete range of the array in object $6022_{\rm hex}$.

Table 65: Objects 6020 _{hex} , 6021 _{hex} and 6022 _{hex}	Feature	Description/ Value
	Name	Read input bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 80 _{hex}
	Data Type	Boolean
	Access	ro
	Default value, BL67	No

6100_{hex} - Read Input 16 Bit

The object presents the values for the digital input modules in 16-bit groups.

A total of 18 groups (each 16 bit) can be displayed (288 digital input channels).

Table 66: Objects 6100 _{hex}	Feature	Description/ Value
	Name	Read input 16 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 12 _{hex}
	Data Type	Unsigned16
	Access	ro
	Default value, BL67	No

6120_{hex} - Read Input 32 Bit

The object presents the values for the digital input modules in 32-bit groups.

A total of 9 groups (each 32 bit) can be displayed (288 digital input channels).

Table 67: Objects 6120 _{hex}	Feature	Description/ Value
	Name	Read input 32 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 09 _{hex}
	Data Type	Unsigned32
	Access	ro
	Default value, BL67	No

Objects for Digital Output Modules General Overview for Digital Output Objects

Table 68: General overview	Object	Name	Page
for digital output	6200 _{hex}	Write output 8 bit	4-123
objects	6220 _{hex}	Write output 8 bit (1 to 128)	4-124
	6221 _{hex}	Write output 8 bit (129 to 256)	4-124
	6222 _{hex}	Write output 8 bit (257 to 288)	4-124
	6300 _{hex}	Write output 16 bit	4-125
	6320 _{hex}	Write output 32 bit	4-126
	6206 _{hex}	Error mode output 8 Bit	4-127
	6207 _{hex}	Error state output 8 Bit	4-128
	6250 _{hex}	Error mode output Bit (1 to 128)	4-129
	6251 _{hex}	Error mode output Bit (129 to 256)	4-129
	6252 _{hex}	Error mode output Bit (257 to 288)	4-129
	6260 _{hex}	Error state output Bit (1 to 128)	4-131
	6261 _{hex}	Error state output Bit (129 to 256)	4-131
	6262 _{hex}	Error state output Bit (257 to 288)	4-131
	6306 _{hex}	Error mode output 16 bit	4-133
	6307 _{hex}	Error state output 16 bit	4-134
	6326 _{hex}	Error mode output 32 Bit	4-135
	6327 _{hex}	Error state output 32 Bit	4-136

The following figure shows the relationship between the digital output objects for an 8-bit access:

6200_{hex} - Write Output 8 Bit

The object presents the values for the digital output modules in 8-bit groups.

A total of 36 groups (each 8 bit) can be defined (288 digital output channels).

A PDO-mapping of this object is always made automatically as a default for the first 8 Sub-indices. This corresponds to 64 digital output channels.

If more than 64 output channels are present, then the PDO-mapping must be carried out by the user.

Table 69: Objects 6200 _{hex}	Feature	Description/ Value
	Name	Write output 8 Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 24 _{hex}
	Data Type	Unsigned8
	Access	rw
	Default value, BL67	0

6220_{hex} - Write Output Bit (1 to 128)

6221_{hex} - Write Output Bit (129 to 256)

6222_{hex} - Write Output Bit (257 to 288)

The objects are a bit-wise representation of the values of the digital output modules. Each sub-index for these objects is a Boolean value.

A total of 128 bits can be represented (128 digital output channels).

If more than 128 output channels are present, then object $6221_{\rm hex}{\rm is}$ used.

If more than 256 output channels are present, then object $\mathrm{6222}_{\mathrm{hex}}$ is used.

Since the number of digital input channels in a station is limited to 288, it is not possible to make use of the complete range of the array in object 6222_{hex} .

Table 70: Objects 6220 _{hex} , 6221 _{hex} , 6222 _{hex}	Feature	Description/ Value
	Name	Write output bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 80 _{hex}
	Data Type	Boolean
	Access	rw
	Default value, BL67	0

6300_{hex} - Write Output 16 Bit

The object presents the values for the digital output modules in 16bit groups.

A total of 18 groups (each 16 bit) can be defined (288 digital output channels).

Table 71: Objects 6300 _{hex}	Feature	Description/ Value
	Name	Write output 16 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 12 _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	0000 _{hex}

6320_{hex} - Write Output 32 Bit

The object presents the values for the digital output modules in 32bit groups.

A total of 9 groups (each 32 bit) can be defined (288 digital output channels).

Table 72: Objects 6320 _{hex}	Feature	Description/ Value
	Name	Write output bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-Index	01 _{hex} to 09 _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	0000 0000 _{hex}

6206_{hex} - Error Mode Output 8 Bit

The object defines values in 8-bit groups. A total of 36 groups (each 8 bit) can be defined (288 digital output channels).

It defines (for each digital output channel) whether or not the output should take on a substitute value in the event of an error. The rule is:

0 = The output maintains its value if an error occurs.

1 = The output is set to a substitute value if an error occurs.

The substitute values for the digital output channels are defined by the Error state output object (e.g. 6207_{hex}).

Table 73: Objects 6206 _{hex}	Feature	Description/ Value
	Name	Error mode output 8 Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 24 _{hex}
	Data Type	Unsigned8
	Access	rw
	Default value, BL67	FF _{hex}

6207_{hex} - Error State Output 8 Bit

The object defines values in 8-bit groups. A total of 36 groups (each 8 bit) can be defined (288 digital output channels).

The substitute value is defined for each digital output channel. The substitute values will only be used in the event of an error if a 1 is entered in an Error mode output object (e.g. 6206_{hex}) for the particular output channel.

Substitute values:

0 = The output will be switched off if an error occurs.

1 = The output will be switched onif an error occurs.

Table 74: Objects 6207 _{hex}	Feature	Description/ Value
	Name	Error state output 8 Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 24 _{hex}
	Data Type	Unsigned8
	Access	rw
	Default value, BL67	00 _{hex}

6250_{hex} - Error Mode Output Bit (1 to 128)

6251_{hex} - Error Mode Output Bit (129 to 256)

6252_{hex} - Error Mode Output Bit (257 to 288)

The objects defined the values bit-wise. Each sub-index for these objects is a Boolean value.

A total of 128 bits can be represented (128 digital output channels).

If more than 128 output channels are present, then object ${\rm 6251}_{\rm hex}{\rm is}$ used.

If more than 256 output channels are present, then object ${\rm 6252}_{\rm hex}\,{\rm is}$ used.

Since the number of digital input channels in a station is limited to 288, it is not possible to make use of the complete range of the array in object $6522_{\rm hex}$.

It is possible to define, for each digital output channel, whether or not the output should take on a substitute value in the event of an error. The rule is:

- 0 = The output maintains its value if an error occurs.
- 1 = The output is set to a substitute value if an error occurs.

The substitute values for the digital output channels are defined by the Error state output objects (e.g. 6260_{hex} , 6261_{hex} and 6262_{hex}).

Table 75: Objects 6250 _{hex} , 6251 _{hex} , 6252 _{hex}	Feature	Description/ Value
	Name	Error mode output Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No

BL67 - Communication in CANopen

	Description/ Value	
Sub-index	01 _{hex} to 80 _{hex}	
Data Type	Boolean	
Access	rw	
Default value, BL67	1	
	Data Type Access	

6260_{hex} - Error State Output Bit (1 to 128)

6261_{hex} - Error State Output Bit (129 to 256)

6262_{hex} - Error State Output Bit (257 to 288)

The objects defined the values bit-wise. Each sub-index for these objects is a Boolean value.

A total of 128 bits can be represented (128 digital output channels).

If more than 128 output channels are present, then object ${\rm 6261}_{\rm hex}{\rm is}$ used.

If more than 256 output channels are present, then object ${\rm 6262}_{\rm hex}$ is used.

Since the number of digital input channels in a station is limited to 288, it is not possible to make use of the complete range of the array in object $6262_{\rm hex}$.

The substitute value is defined for each digital output channel. The substitute values will only be used in the event of an error if a 1 is entered in an Error mode output object (e.g. 6250_{hex} , 6251_{hex} and 6251_{hex}) for the particular output channel.

Substitute values:

- 0 = The output will be switched off if an error occurs.
- 1 = The output will be switched on if an error occurs.

BL67 - Communication in CANopen

Table 76: Objects 6260 _{hex} , 6261 _{hex} , 6262 _{hex}	Feature	Description/ Value	
	Name	Error state output bit	
	Object code	ARRAY	
	PDO-mapping	Yes	
	Sub-index	00 _{hex}	
	Data Type	Unsigned8	
	Access	ro	
	Default value, BL67	No	
	Sub-index	01 _{hex} to 80 _{hex}	
	Data Type	Boolean	
	Access	rw	
	Default value, BL67	0	

6306_{hex} - Error Mode Output 16 Bit

The object defines values in 16 bit groups. A total of 18 groups (each 16 bit) can be defined (288 digital output channels).

It is possible to define, for each digital output channel, whether or not the output should take on a substitute value in the event of an error. The rule is:

0 = The output maintains its value if an error occurs.

1 = The output is set to a substitute value if an error occurs.

The substitute values for the digital output channels are defined by an Error state output object (e.g. 6307_{hex}).

Table 77: Objects 6306 _{hex}	Feature	Description/ Value
	Name	Error mode output 16 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 12 _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	FFFF _{hex}

6307_{hex} - Error State Output 16 Bit

The object defines values in 16 bit groups. A total of 18 groups (each 16 bit) can be defined (288 digital output channels).

The substitute value is defined for each digital output channel. The substitute values will only be used in the event of an error if a 1 is entered in an Error mode output object (e.g. $6306_{\rm hex}$) for the particular output channel.

Substitute values:

0 = The output will be switched off if an error occurs.

1 = The output will be switched on if an error occurs.

Table 78: Objects 6307 _{hex}	Feature	Description/ Value
	Name	Error state output 16 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 12 _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	0000 _{hex}

6326_{hex} - Error Mode Output 32 Bit

The object defines values in 32-bit groups. A total of 9 groups (each 32 bit) can be defined (288 digital output channels).

It is possible to define, for each digital output channel, whether or not the output should take on a substitute value in the event of an error. The rule is:

0 = The output maintains its value if an error occurs.

1 = The output is set to a substitute value if an error occurs.

The substitute values for the digital output channels are defined by an Error state output object (e.g. 6327_{hex}).

Table 79: Objects 6326 _{hex}	Feature	Description/ Value
	Name	Error mode output 32 Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 09 _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	FFFF FFFF _{hex}

6327_{hex} - Error State Output 32 Bit

The object defines values in 32-bit groups. A total of 9 groups (each 32 bit) can be defined (288 digital output channels).

The substitute value is defined for each digital output channel. The substitute values will only be used in the event of an error if a 1 is entered in an Error mode output object (e.g. $6326_{\rm hex}$) for the particular output channel.

Substitute values:

0 = The output will be switched off if an error occurs.

1 = The output will be switched on if an error occurs.

Table 80: Objects 6327 _{hex}	Feature	Description/ Value
	Name	Error state output 32Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 09 _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	0000 0000 _{hex}

Objects for Digital Combi Modules

•	
- 1	
	•

Note

For the objects for digital combi modules, please refer to the objects of the digital input modules (page 4-113 ff.) and the digital output modules (page 4-121 ff.).

Object 3064_{hex} - XBI Param Dword

The object "XBI Param Dword" writes the first parameter Dword (Byte 0 to 3) of a module.

Attention

The sub-index corresponds to the slot number of the respective module in a station.

Note

Objects 3000_{hex} to 3097_{hex} enable direct access to the internal module bus of the BL67 station.

Table 81: Object 3064 _{hex}	Feature	Description/ Value
	Name	XBI Param Dword
	Object code	ARRAY
	Data Type	Unsigned32
	Access	rw
	Default value	No
	PDO-mapping	No

The structure of the 4 bytes of parameter data depends on the module concerned. A sub-index is assigned for each Module. The following explains the structure for each module type:

Table 82: parameters BL67-4DI4DO-PD		Byte	yte Bit Parameter		Value/ Meaning	
		0	0 Input filter 1	0 = deactivate A		
A	default setting				1 = activate	
			3	Input filter 4		
		1	0	Digital input 1	0 = normal A	
					1 = inverted	
			3	Digital input 3		
		2	0	Output on overcurrent 1	0 = automatic recovery A 1 = controlled recovery	
			3	Output on overcurrent 4		
		3		reserved		

BL67-4DI4DO-PD

BL67-8XSG-PD

Table 83:	Byte	e Bit Parameter		Value/ Meaning	
parameters BL67-8XSG-PD	0	0	Input filter 0	0 = deactivate A	
A default setting				1 = activate	
		7	Input filter 7		
	1	0	Digital input 0	0 = normal A	
				1 = inverted	
		7	Digital input 7		
	2	0	Output on overcurrent 0	0 = automatic recovery A 1 = controlled recovery	
		7	Output on overcurrent 7		
	3	0	Output 0	0 = deactivate A	
				1 = activate	
		7	Output 7		

Objects for Analog Input Modules General Overview for Analog Input Objects

Table 84:	Object	Name	Page
General overview for analog input	5420 _{hex}	Manu Spec Analog Input Range	4-142
objects	6401 _{hex}	Read analog input 16 Bit	4-147
	6421 _{hex}	Analog input interrupt Trigger Selection	4-149
	6422 _{hex}	Analog input interrupt source	4-151
	6423 _{hex}	Analog input global interrupt enable	4-152
	6424 _{hex}	Analog input interrupt upper limit Integer	4-153
	6425 _{hex}	Analog input interrupt lower limit Integer	4-154
	6426 _{hex}	Analog input interrupt delta Unsigned	4-155
	6427 _{hex}	Analog input interrupt negative delta Unsigned	4-156
	6428 _{hex}	Analog input interrupt positive delta Unsigned	4-157

The following figure shows the relationship between the analog input objects for an Integer16 access:

Figure 4:

Relationship between the analog input objects

5420_{hex} - Manu Spec Analog Input Range

The object "Manu spec analog input range" defines the parameters of the analog input channels. Write accesses initiate a parameter update on the BL67- module bus.

The parameter is stored retentively in the gateway and in the appropriate module, and is restored with every node reset.

The Sub-indices $01_{hex} - 8E_{he}$ define the parameters for the analog input channel 1 to 142.

Table 85: Objects 5420 _{hex}	Feature	Description/ Value
	Name	Manu spec analog input range
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	No

The structure of the 2 bytes of parameter data depends on the module concerned. A sub-index is assigned for each channel. The following explains the structure for each module type:

Table 86:	Byte	Bit	Parameter	Value/ Meaning
Parameters BL67-2AI-I A default setting	0	0	Current mode	0 = 020 mA A 1 = 420 mA
in concerning		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved
		2	Diagnostic	0 = release A 1 = block
		3	Channel Kx	0 = activate A 1 = deactivate
		4 to 7	reserved	

BL67-2AI-V

Table 87:	Byte	Bit	Parameter	Value/ Meaning
Parameters BL67-2AI-V	0	0	Voltage mode	0 = 010 V A 1 = -1010 V
A default setting				1 = -1010 V
		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved
		2	Diagnostic Kx	0 = release A 1 = block
		3	Channel	0 = activate A 1 = deactivate
		4 to 7	reserved	

TURCK

BL67 - Communication in CANopen

BL67-2AI-PT

Table 88:	Byte	Bit	Parameter	Value/ Meaning
Parameter data BL67-2AI-Pt A default setting	0	0	Mains suppression	0 = 50 Hz A 1 = 60 Hz
J		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved
		2	Diagnostic	0 = release A 1 = block
		3	Channel Kx	0 = activate A 1= deactivate
		4 to 7	Element	$\begin{array}{c} 0000 = \mbox{Pt100}, \ -200850\ \ \mbox{C}\ \ \mbox{A}\\ 0001 = \mbox{Pt100}, \ -200150\ \ \ \mbox{C}\\ 0010 = \mbox{Ni100}, \ -60250\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	1	0	measurement mode	0 = 2-wire A 1 = 3-wire

BL67-2AI-TC

Table 89: Parameters BL67-2AI-TC	Byte	Bit	Parameter	Value/ Meaning
A default setting				
	0	0	Mains suppression	0 = 50 Hz A 1 = 60 Hz
		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved
		2	Diagnostic	0 = release A 1 = block
		3	Channel	0 = activate A 1= deactivate
		6 to 4	Element	0000 = type K, -2701370 °C A 0001 = type B, +1001820 °C 0010 = type E, -2701000 °C 0011 = type J, -2101200 °C 0100 = type N, -2701300 °C 0101 = type R, -501760 °C 0110 = type S, -501540 °C 0111 = type T, -270400 °C 1000 = \pm 50 mV 1001 = \pm 100 mV 1011 = \pm 1000 mV
		7	reserved	

BL67 - Communication in CANopen

BL67-4AI-V/I

Table 90: Parameters BL67-4AI-V/I A default setting	Byte	Bit	Parameter	Value/ Meaning
	0	0	Range	0 = 010 V/020 mA A 1 = -1010 V/420 mA
Ŭ		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved
		2	Diagnostic	0 = release A 1 = block
		3	Channel	0 = activate A 1 = deactivate
		4	Operation mode	0 = voltage A 1 = current
		5 to 7	reserved	

6401_{hex} - Read Analog Input 16 Bit

The object represents the measured values for the analog input modules with 16 bits for each channel.

Attention

The process data traffic for the analog input values is not started until the object 6423_{hex} is switched from the default setting FALSE to TRUE!

The representation of the different measured values as numerical values is described in detail from a page 26 onward for each value range.

Attention

The possibility of 12-bit value representation (left-justified) is not useful for CANopen since all reference values (upper limit, lower limit) must be defined with 16 bits.

Table 91: Objects 6401 _{hex}	Feature	Description/ Value
	Name	Read analog input 16 Bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No

BL67 - Communication in CANopen

Table 91: Objects 6401 _{hex}	Feature	Description/ Value
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Integer16
	Access	ro
	Default value, BL67	No

6421_{hex} - Analog Input Interrupt Trigger Selection

Note

Objects $6421 - 6428_{hex}$ can be used to control the event-triggered transmission of the process input data. As well as these event-triggered control objects, the transmission frequency of the process input data is also controlled by means of objects 1800_{hex} to $181F_{hex}$.

Attention

Remember that the object a "6423_{hex} Analog input global interrupt enable", page 4-152 must be used in order to enable the possibility of transmitting the process input data using an interrupt signal!

The object defines which event is to trigger the transmitting of the analog input data (TPDOs) by means of an interrupt signal.

The triggering event is defined for each input channel using a corresponding sub-index of the object.

Table 92: Objects 6421 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt trigger selection
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No

BL67 - Communication in CANopen

Table 92: Objects 6421 _{hex}	Feature	Description/ Value	
	Sub-index	01 _{hex} to 8E _{hex}	
	Data Type	Unsigned8	
	Access	rw	
	Default value, BL67	No	

Table 93:	Bit	Triggering event
A The upper/ lower limit values and delta values are defined with the objects 6424 _{hex} , 6425 _{hex} , 6426 _{hex} , 6427 _{hex} and 6428 _{hex} .	0	1: "upper limit" A exceeded - the value at the input has exceeded the upper limit.
	1	1: Input below "lower limit" A - the value at the input is below the lower limit.
	2	1: Input changed by more than "delta"A - the value at the input has changed by a defined "Delta" value.
	3	1: Input reduced by more than "negative delta" A - the value at the input has reduced by a defined "Delta" value.
	4	1: Input increased by more than "positive delta" A - the value at the input has increased by a defined "Delta" value.
	5 – 7	reserved

Note

The transmitting of the analog input data (TPDOs) by means of an interrupt signal is triggered repeatedly with every change of the analog input value if the value stays above the upper limit or below the lower limit.

If another triggering event occurs at the same time (e.g. increase by "Delta value"), the repeated transmitting is aborted.

1

Note

Several bits can be set simultaneously so that the transmitting of the input process data can be triggered by several events.

6422_{hex} - Analog Input Interrupt Source

The object indicates if an analog input channel has fulfilled a condition for triggering an interrupt signal.

The conditions were defined with object 6421_{hex}.

If a condition for triggering an interrupt signal on a channel is fulfilled, the corresponding bit is set to 1. The corresponding bits for channels 0 to 31 are set in sub-index 01_{hex} and the bits for channels 32 to 63 in sub-index 02_{hex} etc.

The bits can be read using an SDO: The read operation causes the bits to be reset to 0.

Table 94: Objects 6422 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt source
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 08 _{hex}
	Data Type	Unsigned32
	Access	ro
	Default value, BL67	00 _{hex}

6423_{hex} - Analog Input Global Interrupt Enable

This object enables the option for generating an interrupt signal. If the value of this object is set from the default setting FALSE to TRUE, the transmitting of the analog input data (TPDOs) can be triggered by means of an interrupt signal.

Table 95: Objects 6423 _{hex}	Feature	Description/ Value
	Name	Analog input global interrupt enable
	Object code	VAR
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Boolean
	Access	rw
	Default value, BL67	FALSE

6424_{hex} - Analog Input Interrupt Upper Limit Integer

The object 6424_{hex} defines the value for an upper limit.

Values above this "upper limit" can be defined as the condition for generating an interrupt signal.

 \rightarrow "6421_{hex} Analog input interrupt trigger selection", page 4-149.

Table 96: Objects 6424 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt upper limit Integer
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Integer32
	Access	rw
	Default value, BL67	00000000 _{hex}

Note

6425_{hex} - Analog Input Interrupt Lower Limit Integer

The object 6425_{hex} defines the value for a lower limit.

Values below this "lower limit" can be defined as the condition for generating an interrupt signal.

 \rightarrow "6421_{hex} Analog input interrupt trigger selection", page 4-149.

Table 97: Objects 6425 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt lower limit Integer
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Integer32
	Access	rw
	Default value, BL67	00000000 _{hex}

Note

6426_{hex} - Analog Input Interrupt Delta Unsigned

The object 6426_{hex} defines a Delta value.

Values that deviate from the input value by this "Delta value" can be defined as the condition for generating an interrupt signal.

 \rightarrow "6421_{hex} Analog input interrupt trigger selection", page 4-149.

Table 98: Objects 6426 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt delta Unsigned
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	00000000 _{hex}

Note

1

6427_{hex} - Analog Input Interrupt Negative Delta Unsigned

The object 6427_{hex} defines a Delta value.

Values lesser than the input value by this "Delta value" can be defined as the condition for generating an interrupt signal.

 \rightarrow "6421_{hex} Analog input interrupt trigger selection", page 4-149.

Table 99: Objects 6427 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt negative delta Unsigned
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	0000 0000 _{hex}

1 N

Note

4

6428_{hex} - Analog Input Interrupt Positive Delta Unsigned

The object 6428_{hex} defines a Delta value.

Values greater than the input value by this "Delta value" can be defined as the condition for generating an interrupt signal.

 \rightarrow "6421_{hex} Analog input interrupt trigger selection", page 4-149.

Table 100: Objects 6428 _{hex}	Feature	Description/ Value
	Name	Analog input interrupt positive delta Unsigned
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned32
	Access	rw
	Default value, BL67	00000000 _{hex}

Note

Objects for Analog Output Modules General Overview for Analog Output Objects

Table 101: General overview	Object	Name	Page
for analog output	5440 _{hex}	Manu spec analog output range	4-164
objects	6411 _{hex}	Write analog output 16 bit	4-160
	6443 _{hex}	Analog output error mode	4-161
	6444 _{hex}	Analog output error state	4-163

The following figure shows the relationship between the analog output objects for an Integer16 access:

Figure 5:

6411_{hex} - Write Analog Output 16 Bit

The object represents the values for the analog output modules with 16 bits for each channel.

The representation of the current and voltage values as numerical values is described in detail from a page 126 onward for each value range.

Table 102: Objects 6411 _{hex}	Feature	Description/ Value
	Name	Write analog output 16 bit
	Object code	ARRAY
	PDO-mapping	Yes
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Integer16
	Access	rw
	Default value, BL67	00 _{hex}

6443_{hex} - Analog Output Error Mode

It defines for each digital output channel whether or not the output should take on a substitute value in the event of an error. The Subindices of $01_{hex} - 8E_{he}$ define the mode of the analog output channels 1 to 142.

The following applies:

00_{hex}The output maintains its value

if an error occurs.

01_{hex}The output is assigned a substitute value if an error

occurs.

The substitute values for the analog output channels are defined with the object Analog output error state object (6444_{hex}) .

Table 103: Objects 6443 _{hex}	Feature	Description/ Value
	Name	Analog output error mode
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	00 _{hex}

Note

6444_{hex} - Analog Output Error State

The substitute value is defined for each analog output channel. The substitute values are only taken into account in the event of an error if a 01_{hex} was entered for the relevant output channel in object Analog output error mode object (6443_{hex}).

The Sub-indices of 01_{hex} to $8E_{hex}$ define the value for the analog output channels 1 to 142.

Table 104: Objects 6444 _{hex}	Feature	Description/ Value
	Name	Analog output error state
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} to 8E _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	0000 0000 _{hex}

Note

5440_{hex} - Manu spec Analog Output Range

The object "Manu spec analog output range" defines the parameters of the analog output channels. Write accesses initiate a parameter update on the BL67- module bus.

The parameter is stored retentively in the gateway and in the appropriate module, and is restored with every node reset.

The Sub-indices $01_{hex} - 8E_{hex}$ define the parameters for the analog input channel 1 to 142.

Table 105: Objects 5440 _{hex}	Feature	Description/ Value
	Name	Manu spec analog output range
	Object code	ARRAY
	PDO-mapping	No
	Sub-index	00 _{hex}
	Data Type	Unsigned8
	Access	ro
	Default value, BL67	No
	Sub-index	01 _{hex} – 8E _{hex}
	Data Type	Unsigned16
	Access	rw
	Default value, BL67	No
The structure of the 2 bytes of parameter data depends on the module concerned. A sub-index is assigned for each channel. The following explains the structure for each module type:

Table 106:n Parameters	Byte	Bit	Parameter	Value/ Meaning
BL67-2AO-I A default setting	0	0	Current mode	0 = 020 mA A 1 = 420 mA
-		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved)
		2	Channel Kx	0 = activate A 1 = deactivate
		3 to 7	reserved	

BL67-2AO-I

BL67-2AO-V

Table 107:n Parameters	Byte	Bit	Parameter	Value/ Meaning
A default setting	0	0	Voltage mode	0 = 010 V A 1 = -1010 V
		1	Value representation	0 = Integer (15 bit + sign) A 1 = reserved)
		2	Channel Kx	0 = activate A 1 = deactivate
		3 to 7	reserved	

TURCK

Objects for RS232/485-Modules

General Overview for RS232/485 Objects

Table 108: General overview	5600 _{hex} 5601 _{hex}	Name	Page
for RS232/485	5600 _{hex}	RS232/RS4xx parameters	4-167
objects	5601 _{hex}	RS232/RS4xx RxD	4-170
	5602 _{hex}	RS232/RS4xx TxD	4-174

5600_{hex} - RS232/RS4xx Parameters

The parameter setting of the BL67-1RS232 module enables communication with different data terminal devices. The handshake procedure (software/hardware) can be selected. The number of data bits embedded in the telegram, the type of parity, the number of stop bits, the bit transmission rate and the XON/XOFF character used must be configured in the module with the appropriate parameters in order to adapt it to the data format of the data terminal device.

Table 109: Objects 5600 _{hex}	Feature	Description
	Name	RS232/RS4xx parameters
	Object code	ARRAY
	Data type	Unsigned32
	Access	rw
	Default value	No
	PDO-mapping	No

4 bytes are used for the module parameters.

Table 110:	Byte	Bit	Parameter	Value/ Meaning
Table 110: Parameters BL67-1RS232 A default setting	0	-	data rate	$\begin{array}{l} 0000 = \text{reserved} \\ 0001 = 300 \text{ bps} \\ 0010 = 600 \text{ bps} \\ 0011 = 1200 \text{ bps} \\ 0100 = 2400 \text{ bps} \\ 0101 = 4800 \text{ bps} \\ 0110 = 9600 \text{ bps} \\ 0111 = 14400 \text{ bps} \\ 1000 = 19200 \text{ bps} \\ 1000 = 19200 \text{ bps} \\ 1001 = 28800 \text{ bps} \\ 1011 = 57600 \text{ bps} \\ 1011 = 57600 \text{ bps} \\ 1100 = 115200 \text{ bps} \\ 1101 = \text{reserved} \\ 1110 = \text{reserved} \\ 1111 = \text{reserved} \\ 111 = \text{reserved} \\ 11 = $
		5, 4	reserved	
		6	Disable ReducedCtrl	1 Constant setting: The diag- nostic messages are mapped into byte 6 of the process input data (independent of "diag- nostic") Byte 7 contains the status byte, user data are displayed in bytes 0 - 5.
		7	Diagnostic	0 = release 1 = block A

Parameters - BL67-1RS232

Byte	Bit	Parameter	Value/ Meaning
1	0	Stop bits	0 = 1 1 = 2 A
	2, 1	Parity	00 = none 01 = odd A 10 = even
	3	Data bits	0 = 7 A 1 = 8
	5, 4	data flow control	00 = none A 01 = XON/XOFF 10 = RTS/CTS 11 = reserved
	7, 6	reserved	
2		XON character	0 to 255 XON-character (17 A) This character is used to start the data transfer of the data terminal device when the soft- ware-handshake is activated
3		XOFF character	0 to 255 XOFF-character (19 A) This character is used to stop the data transfer of the data terminal device when the soft- ware-handshake is activated

5601_{hex} - RS232/RS4xx RxD

Process input data is data that is transmitted from the connected field device via the BL67-1RS232 module to the communication partner (e.g. PLC). The data received from the device by the BL67-1RS232 module is entered in a 128 byte receive buffer and then transferred in segments to the communication partner via the module bus and the gateway.

This is transferred in an 8-byte format as follows:

- 6 bytes or 7 bytes are used to contain the user data.
- 1 byte contains the diagnostics data depending on the parameter setting.
- 1 status byte is required to ensure trouble-free transmission of the data.

Table 111: Objects 5601 _{hex}	Feature	Description
	Name	RS232/RS4xx RxD
	Object code	ARRAY
	Data type	Unsigned64
	Access	ro
	Default value	No
	PDO-mapping	Yes

Structure of the data bytes with DisableReducedControl = 1 (in object 5600_{hex}):

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	STAT	TX_CN1	ſ_ACK	RX_CN	Г	RX_BY1	FE_CNT	
(Status)								
Byte 1	BufOfl	Frame	HndSh	_	PrmErr	Х	Х	Х
(Diagnostics)		Err	Err	Failure				
Byte 2	Data by	rte 0						
Byte 7	Data by	rte 5						

Structure of the data bytes with DisableReducedControl = 0 (in object 5600_{hex}):

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	STAT	TX_CN	IT_ACK	RX_CN	IT	RX_BY	TE_CNT	
(Status)								
Byte 1	Data byte 0							
Byte 7	Data by	/te 6						

Table 112: Meaning of the data bits for RS232/485- modules	Designation	Value	Description
	STAT	0-1	1: Communication with the data terminal device is not faulty. 0: Communication with the data terminal device is faulty. A diagnos- tics signal is sent if DisableDiagnos- tics = 0 (diagnostics activated). The diagnostics data indicates the cause of the communication fault. This bit must be reset by the user with STATRES in the process output data field (object 5602 _{hex}).
	TX_CNT_ACK	0-3	The value TX_CNT_ACK is a copy of the value TX_CNT. The value TX_CNT was transferred together with the last data segment of the process output data. The value TX_CNT_ACK is a confir- mation of successful acceptance of the data segment using TX_CNT.
	RX_CNT	0-3	The value RX_CNT is linked and transferred together with every data segment of the process input data. The sequence of the RX_CNT values is: 00->01->10->11->00 (decimal: 0->1->2->3->0) A faulty sequence indicates that data segments are missing.
	RX_BYTE_CNT	0-7	Number of valid bytes in this data segment.
	BufOvfl	Bit 7	0 = ok
			1 = Buffer overflow The receive buffer (RX buffer) has overflowed.

4

Table 112: Meaning of the data bits for RS232/485- modules	Designation	Value	Description
	FrameErr	Bit 6	0 = ok
			 1 = Frame error The BL67-1RS232 module parameters must be defined in order to be adapted to the data structure of the DTE. A frame error is output if the parameter setting (number of data bits, stop bits, type of parity) is not suitable.
	HndShErr	Bit 5	0 = ok
			1 = Error in the data flow control The data terminal device connected to the BL67-1RS232 module is not responding to the XOFF or RTS hand- shake. The internal receive buffer can over- flow (buffer overflow = 1).
	HwFailure	Bit 4	0 = ok
			1 = Hardware error The module must be exchanged as the EEPROM or UART may, for example, be faulty.
	PrmErr	Bit 5	0 = ok
			1 = Parameter error The set parameter values are not supported. Possible values are shown with the description of object 5600 _{hex} .

5602_{hex} - RS232/RS4xx TxD

Process output data is data that is output from the communication partner (e.g. PLC) via the gateway and the BL67-1RS232 module to the field device.

The data received from the communication partner in the BL67-1RS232 module is entered in a 64 byte transmit buffer.

This is transferred in an 8-byte format as follows:

- 6 bytes or 7 bytes are used to contain the user data.
- With the corresponding parameters, 1 byte contains signals for triggering the clearing of the transmit and receive buffer.
- 1 control byte is required to ensure trouble-free transmission of the data.

Table 113: Objects 5602 _{hex}	Feature	Description	
	Name	RS232/RS4xx TxD	
	Object code	ARRAY	
	Data type	Unsigned64	
	Access	ro	
	Default value	No	
	PDO-mapping	Yes	

4

Structure of the data bytes with DisableReducedControl = 1 (in object 5600_{hex}):

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0		RX_CN	IT_ACK	TX_CN	IT	TX_BY	TE_CNT	
(Status)	ES							
Byte 1	reserve	d					RXBU	TXBU
(Diagnostics)							FFLUS H	FFLU SH
Byte 2	Data by	te 0						
Byte 7	Data by	te 5						
	Structure of the data bytes with DisableReducedControl = 0 object 5600_{hex} :							
				tes with	DisableF	Reduced	Control =	0 (in
				tes with Bit 4	DisableF Bit 3	Reduced Bit 2	Control = Bit 1	0 (in Bit 0
Byte 0	object 5 Bit 7 STATR	5600 _{hex}): Bit 6	:		Bit 3	Bit 2		-
Byte 0 (Status)	object 5 Bit 7	5600 _{hex}): Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	-
	object 5 Bit 7 STATR	Bit 6 RX_CN	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	-
(Status)	object 5 Bit 7 STATR ES	Bit 6 RX_CN	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	-

Table 114: Meaning of the data bits for RS232/485- modules	Designation	Value	Description
	STATRES	0-1	The STATRES bit is used for resetting the STAT bit of the process input data (object 5601 _{hex}) The STAT bit is reset (from 0 to 1) with the transition from 1 to 0 (falling edge). If this bit is 0, all changes in the data fields TX_BYTE_CNT, TX_CNT and RX_CNT_ACK are ignored. The clearing of the receive and transmit buffer by RXBUF FLUSH/TXBUF FLUSH is possible. The value 1 or the transition from 0 to 1 disables the clearing of the receive and transmit buffer by the RXBUF FLUSH/TXBUF FLUSH.
	RX_CNT_ACK	0-3	The value RX_CNT_ACK is a copy of the value RX_CNT. The value RX_CNT was transferred together with the last data segment of the process input data (object 5601 _{hex}). The value RX_CNT_ACK is a confir- mation of successful acceptance of the data segment using RX_CNT.
	TX_CNT	0-3	The value TX_CNT is transferred together with every data segment of the process output data. The sequence of the TX_CNT values is: 00 -> 01 -> 10 -> 11 -> 00 (decimal: $0 -> 1 -> 2 -> 3 -> 0$) A faulty sequence indicates that data segments are missing.
	TX_BYTE_CNT	0-7	Number of valid user data bytes in this data segment.

4

Table 114: Meaning of the data bits for RS232/485- modules	Designation	Value	Description
	RXBUF FLUSH	0-1	The RXBUF FLUSH bit is used for clearing the receive buffer. If STATRES = 1: A request with RXBUF FLUSH = 1 will be ignored. If STATRES = 0: RXBUF FLUSH = 1 will clear the receive buffer.
	TXBUF FLUSH	0-1	The TXBUF FLUSH bit is used for clearing the transmit buffer. If STATRES = 1: A request with TXBUF FLUSH = 1 will be ignored. If STATRES = 0: TXBUF FLUSH = 1 will clear the receive buffer.

Objects for SSI-Modules General Overview for SSI Objects

Table 115: General overview	Object	Name	Page
for SSI objects	5801 _{hex}	Encoder config	4-179
	5802 _{hex}	Encoder status	4-182
	5803 _{hex}	Encoder flags	4-183
	5804 _{hex}	Encoder diag	4-185
	5805 _{hex}	SSI Native status	4-187
	5806 _{hex}	SSI Optional encoder status	4-191
	5808 _{hex}	Encoder control	4-192
	5840 _{hex}	SSI Diag mapping	4-193
	6800 _{hex}	Operating parameters	4-195
	6810 _{hex}	Preset values for multi-sensor devices	4-195
	6820 _{hex}	Position value	4-196
	6B00 _{hex}	CAN State register	4-197
	6B01 _{hex}	CAM Enable register	4-198
	6B02 _{hex}	CAM Polarity register	4-199
	6B10 _{hex}	CAM Low limit	4-200
	6B20 _{hex}	CAM High limit	4-200
	6B02 _{hex}	CAM Polarity register	4-199
	6B02 _{hex}	CAM Polarity register	4-199
	6B02 _{hex}	CAM Polarity register	4-199

5801_{hex} – Encoder Config

The Encoder config object has an effect on parameter bytes 0 to 3 of the BL67-1SSI module and is used for setting the configuration. Write accesses initiate a parameter update on the BL67- module bus. The parameter is stored retentively in the gateway and is restored with every node reset.

Table 116: Objects 5801 _{hex}	Feature	Description
	Name	Encoder config
	Object code	ARRAY
	Data type	Unsigned32
	Access	rw
	Default value	No
	PDO-mapping	No

Structure of the data bytes for the SSI-module:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (Status)	х	х	DIS_ERR _SSI	х	х	х	Х	х
Byte 1	Х	INVALI	D_BITS_MS	SB	INVALID_BITS_LSB			
Byte 2	х	х	х	Х	SSI_B	IT_RAT	E	
Byte 3	SSI_ CODE_ G/D	х	SSI_FRAME_LENGTH					

Table 117: Meaning of the data bits for SSI- modules	Designation	Value	Description
A default setting	DIS_ERR_SSI Encoder data	0 A 0	Activate: ZERO test of data cable.
	cable test	1	Deactivate After the last valid bit, a ZERO test of the data cable is not carried out.
	INVALID_BITS_ LSB Number of invalid bits (LSB)	0 to 15	Number of invalid bits on the LSB side of the position value supplied by the SSI encoder. The meaningful word width of the position value transferred to the module bus master is as follows: SSI_FRAME_LEN - INVALID_BITS_MSB - INVALID_BITS_LSB. The invalid bits on the LSB side are removed by shifting the position value to the right, starting with the LSB. INVALID_BITS_MSB + INVALID_BITS_LSB must always be less than SSI_FRAME_LEN. Default 0 Bit = 0 _{hex}
	INVALID_BITS_ MSB Number of invalid bits (MSB)	0-7	Number of invalid bits on the MSB side of the position value supplied by the SSI encoder. The meaningful word width of the position value transferred to the module bus master is as follows: SSI_FRAME_LEN - INVALID_BITS_MSB - INVALID_BITS_LSB. The invalid bits on the MSB side are zeroed by masking the position value. INVALID_BITS_MSB + INVALID_BITS_LSB must always be less than SSI_FRAME_LEN. Default: 0 = 0 _{hex}

Table 117: Meaning of the data bits for SSI- modules	Designation	Value	Description
	SSI_BIT_RATE	0	1000000 Bit/s
	Bit transmis- sion rate	1 A	500000 Bit/s
		2	250000 Bit/s
		3	125000 Bit/s
		4	100000 Bit/s
		5	83000 Bit/s
		6	71000 Bit/s
		7	62500 Bit/s
		8 to 15	Reserve
	SSI_FRAME_LE N Number of data frame bits	1 to 32	Number of bits of the SSI data frame. SSI_FRAME_LEN must always be greater than INVALID_BITS. Default: 25 = 19 _{hex}
	SSI_CODE_G/D Data format	0 A	SSI encoder sends data in binary code
		1	SSI encoder sends data in Gray code

Object 5802_{hex} – Encoder Status

On the BL67-1SSI module, bits 6 and 7 of the Encoder status object are emulated for the counter. The bits describe the up/down direction of the current values.

Table 118: Objects 5802 _{hex}	Feature	Description			
	Name	Encoder status			
	Object code	ARRAY			
	Data type	Unsigned8			
	Access	ro			
	Default value	No			
	PDO-mapping	Yes			

Structure of Byte 6 of the process input:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 6	STS_UP	STS_DN	0	0	0	0	0	0

Table 119: Meaning of the status data bits	Designation	Value	Description
	STS_UP (LED UP)	0	The SSI encoder values are decremented or the values are constant.
		1	The SSI encoder values are incremented.
	STS_DN (LED DN)	0	The SSI encoder values are incremented or the values are constant.
		1	The SSI encoder values are decremented.

Object 5803_{hex} – Encoder Flags

On the BL67-1SSI module, bits 3 to 6 of the Encoder flags object are emulated as much as possible for the counter. The object comprises the bits FLAG_CMP1, FLAG_CMP2, STS_OFLW and STS_UFLW. Unlike the counter module, the bits STS_OFLW and STS_UFLW SSI module are non-retentive status bits. All other bits are 0.

Writing the object with any value will reset the markers FLAG_CMP1 and FLAG_CMP2. Exception: if the relevant condition for setting a marker is still fulfilled, this marker will continue to remain set.

Table 120: Objects 5803 _{hex}	Name			Description					
				End	coder flag	js			
				ARRAY					
	Data t	уре		Un	signed8				
	Acces	s		rw					
	Default value PDO-mapping			No					
				Yes	6				
	Bit 7 Bit 6 E		Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0	STS_ UFLW	STS_ OFLW		FLAG_ CMP2	FLAG_ CMP1	0	0	0
Table 121: Meaning of the encoder flags	Desig	nation	Value	De	escriptio	'n			
	FLAG_CMP1 0			Default status, i.e. the register contended have not yet matched (REG_SSI_PC (REG_CMP1) since the last reset.				SSI_PC	
			1	The contents of the registers match (REG_SSI_POS) = (REG_CMP1). This marker must be reset when CLR_CMP1 = 1 in the process output					

Table 121:DesignationMeaning of the encoder flags		Value	Description
	FLAG_CMP2 0		Default status, i.e. the register contents have not yet matched (REG_SSI_POS) = (REG_CMP2) since the last reset.
		1	The contents of the registers match: (REG_SSI_POS) = (REG_CMP2). This marker must be reset with CLR_CMP2 = 1 in the process output data.
	STS_UFLW	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) \geq (REG_LOWER_LIMIT)
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) < (REG_LOWER_LIMIT)
	STS_OFLW	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) \leq (REG_UPPER_LIMIT)
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) > (REG_UPPER_LIMIT)

Object 5804_{hex} – Encoder Diag

The Encoder diag object reads the diagnostics byte of the BL67-1SSI module.

Table 122: Objects 5804 _{hex}	Featu	ire		Descr	iption			-	
	Name	•		Encod	er diag				
	Objec	t code		ARRAY	(_	
	Data t	ype		Unsigr	ned8			_	
	Acces	s		ro				_	
	Defau	lt value		No					
	PDO-mapping			No	No				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	х	Х	Х	ERR_ PARA	STS_ UFLW	STS_ OFLW	ERR_ SSI	SSI_ DIAG	
Table 123: Meaning of the data bits	Designation Value Description								
	SSI_DIAG 0		0	No en = 0 or encoc	SI_STSx SSI				
	1			At least one enabled status signal is activ SSI_STSx = 1.					
	ERR_	SSI	0	SSI encoder signal present.					
		1			SSI encoder signal faulty (e.g. due to a cable break).				
	STS_0	OFLW	0	SSI encoder value below / equal to limit.				to upper	
			1		ncoder val	ue above	upper lir	nit. Over-	

Table 123: Meaning of the data bits	Designation	Value	Description
	STS_UFLW	0	SSI encoder value above / equal to lower limit.
		1	SSI encoder value below lower limit. Underflow occurred.
	ERR_PARA	0	The parameter set of the module has been accepted.
		1	Operation of the module is not possible with the present parameter set.

Object 5805_{hex} – SSI Native Status

The SSI Native status object reads the bytes 0 to 1 of the process input of the BL67-1SSI module.

Writing the object with any value will reset the retentive markers FLAG_CMP1 and FLAG_CMP2. Exception: if the relevant condition for setting a marker is still fulfilled, this marker will continue to remain set.

Table 124: Objects 5805 _{hex}	Featu	Feature			Description					
	Name			SSI Nativ	e status			_		
Object code		,	ARRAY				-			
	Data type Access Default value			Unsigned	-					
				rw	-					
				No	-					
	PDO-m	napping	,	Yes				-		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0	STS_ STOP	х	х	ERR_ PARA	STS_ UFLW	STS_ OFLW	ERR_ SSI	SSI_ DIAG		
Byte 1	STS_ UP	STS_ DN	REL_ CMP2	FLAG_ CMP2	STS_ CMP2	REL_ CMP1	FLAG_ CMP1	STS_ CMP1		

Table 125: Meaning of the data bits	Designation	Value	Description				
	STS_STOP	The SSI encoder is read cyclically.					
		1	Communication with the SSI encoder is stopped as STOP = 1 (process output) or ERR_PARA = 1.				
	ERR_PARA	0 The parameter set of the module has accepted.					
		1	Operation of the module is not possible with the present parameter set.				
	STS_UFLW	0 A comparison of the register content produced the following result: (REG_SSI_POS) ≧ (REG_LOWER_L					
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) < (REG_LOWER_LIMIT)				
	STS_OFLW	0	A comparison of the register contents has produced the following result: $(REG_SSI_POS) \leq (REG_UPPER_LIMIT)$				
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) > (REG_UPPER_LIMIT)				
	ERR_SSI	0	SSI encoder signal present.				
		1	SSI encoder signal faulty. (e.g. due to a cable break).				
	SSI_DIAG	0	No enabled status signal is active $(SSI_STSx = 0).$				
		1	At least one enabled status signal is active $(SSI_STSx = 1)$.				

Table 125: Meaning of the data bits	Designation	Value	Description
	STS_UP (LED UP)	0	The SSI encoder values are decremented or the values are constant.
		1	The SSI encoder values are incremented.
	STS_DN (LED DN)	0	The SSI encoder values are incremented or the values are constant.
		1	The SSI encoder values are decremented.
	REL_CMP2	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) < (REG_CMP2)
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) \geq (REG_CMP2)
	FLAG_CMP2	0	Default status, i.e. the register contents have not yet matched (REG_SSI_POS) = (REG_CMP2) since the last reset.
		1	The contents of the registers match: (REG_SSI_POS) = (REG_CMP2). This marker must be reset with CLR_CMP2 = 1 in the process output data.
	STS_CMP2	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) \neq (REG_CMP2)
		1	A comparison of the register contents has produced the following result: (REG_ SSI_POS) = (REG_CMP2)
	REL_CMP1	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) < (REG_CMP1)
		1	A comparison of the register contents has produced the following result: (REG_SSI_POS) \geq (REG_CMP1)

Table 125: Meaning of the data bits	eaning of the		Description
	FLAG_CMP1	0	Default status, i.e. the register contents have not yet matched (REG_SSI_POS) = (REG_CMP1) since the last reset.
		1	The contents of the registers match: (REG_SSI_POS) = (REG_CMP1). This marker must be reset when CLR_CMP1 = 1 in the process output data.
	STS_CMP1	0	A comparison of the register contents has produced the following result: (REG_SSI_POS) \neq (REG_CMP1)
		1	A comparison of the register contents has produced the following result: (REG_ SSI_POS) = (REG_CMP1)

Object 5806_{hex} – **SSI Optional Encoder Status**

The SSI Optional encoder status object reads byte 2 of the process input of the BL67-1SSI module. Bits 6 and 7 are masked out.

Table 126: Objects 5806 _{hex}	Feature	Feature			Description					
	Name	Name Object code				SSI Optional encoder status				
	Object c								_	
	Data typ	е		Un	signed	8			_	
	Access			ro					_	
	Default v	alue		Nc)				_	
	PDO-mapping			Ye	S				_	
	Bit 7 Bit 6		Bit	it 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0	
Byte 2	masked (0)	masked (0)	Х		х	SSI_ STS3	SSI_ STS2	SSI_ STS1	SSI_ STS0	
Table 127: Meaning of the data bits	Designa	ation Va	alue	D	escrip	tion				
	SSI_STS	3 0						ne status		
		1						status m some SS	0	
	SSI_STS	62 0					atus bits e positior	are trans	sferred	
		1			gotiloi		poolition	i valao.		
	SSI_STS	51 0								
		1								
	SSI_STS	0 0								
		1								

Object 5808_{hex} – Encoder Control

The object Encoder control writes and reads byte 0 of the control interface of the SSI module and serves for influencing the module during operation.

At the moment only bit 7 (STOP) is used.

Table 128: Objects 5808 _{hex}	Feature	Description
	Name	Encoder control
	Object code	ARRAY
	Data type	Unsigned8
	Access	rw
	Default value	No
	PDO-mapping	Yes

Object 5840_{hex} – SSI Diag Mapping

The SSI Diag mapping object writes and reads register 51 (REG_SSI_MASK) of the BL67-1SSI module.

The REG_SSI_MASK contains the SSI encoder diagnostics transferred.

Some SSI encoders not only transfer the position value in the data frame that they transfer to the module but also supply additional status messages. It is advisable to include these status messages in the application in order to analyze the measured value.

Writing the REG_SSI_MASK register allows up to four individual bits to be taken from the SSI encoder data frame and transferred to the SSI_STSx bits of the process input data. It is also possible to output the "SSI encoder group diagnostics message" with an acyclic diagnostics operation when a status message is initiated.

Table 129: Objects 5840 _{hex}	Feature	Description			
	Name	SSI Diag mapping			
	Object code	ARRAY			
	Data type	Unsigned32			
	Access	rw			
	Default value	No			
	PDO-mapping	No			
Process input data	REG_SSI_M	IASK			

	Byte	Bit 7	Bit 6	B 5	B4 B3 B2 B1 B0
SSI_STS0	0	EN_D0_RMS0	EN_D0_DS	х	SSI_FRAME_BIT_SEL0
SSI_STS1	1	EN_D1_RMS1	EN_D1_DS	х	SSI_FRAME_BIT_SEL1
SSI_STS2	2	EN_D2_RMS2	EN_D2_DS	Х	SSI_FRAME_BIT_SEL2
SSI_STS3	3	EN_ D3_RMS3	EN_D3_DS	х	SSI_FRAME_BIT_SEL3

Table 130: Meaning of the data bits	Designation	Value	Description
A default setting EN_Dx_RMSx		A 0	The evaluation of the SSI status messages for bit 0 of the diagnostics is not activated
		1	The evaluation of the SSI status messages for bit 0 of the diagnostics is activated.
	EN_ Dx_DS	0-31	Definition of the selected bits in the frame of the SSI encoder to be evaluated or copied. Default:0

The following applies to bit 0 (SSI group diagnostics) of the diagnostics interface and SSI_DIAG of the process input data:

(SSI_STS0 & EN_D0_DS) || (SSI_STS1 & EN_D1_DS) || (SSI_STS2 & EN_D2_DS) || (SSI_STS3 & EN_D3_DS)

Object 6800_{hex} – Operating Parameters

i

Note

Object 6800_{hex} (corresponds to object 6000_{hex} in accordance with CiA DS406) has no meaning with BL67-, and only exists because it is a "mandatory" object in accordance with DS406.

Table 131: Objects 6800 _{hex}	Feature	Description
	Name	Operating parameters
	Object code	VAR
	Data type	Unsigned16
	Access	rw
	Default value	00h
	PDO-mapping	No

Object 6810_{hex} – Preset Values for Multi-Sensor Devices

Object 6810_{hex} (corresponds to object 6010_{hex} in accordance with CiA DS406) is used for zero point adaption. The content of this object is added to the value of the SSI encoder. The resulting value is stored in object 6820hex.

Objects 6810 _{hex}	Feature	Description
	Name	Position value for multi-sensor devices
	Object code	ARRAY
	Data type	Integer32
	Access	rw
	Default value	No
	PDO-mapping	Yes

Object 6820_{hex} – Position Value

Position value for multi-sensor devices

Object 6820_{hex} (corresponds to object 6020_{hex} as per CiA DS406) contains the SSI encoder value of the BL67-1SSI module. The content of the object 6810_{hex} "Preset values for multi-sensor devices" contains a value that is added to correct the measured value for a zero point adjustment.

Table 133: Objects 6820 _{hex}	Feature	Description	
	Name	Position value	
	Object code	ARRAY	
	Data type	Integer32	
	Access	ro	
	Default value	No	
	PDO-mapping	Yes	

Object 6B00_{hex} – CAM State Register

The object CAM State register indicates in accordance with DS406 whether the actual counter status is within the range defined by CAM1 Low limit and CAM1 High limit (object 6B10_{hex} and 6B20hex).

Table 134: Objects 6B00 _{hex}	Feature	Description
	Name	CAM State register
	Object code	ARRAY
	Data type	Unsigned8
	Access	ro
	Default value	No
	PDO-mapping	Yes
T-1-1- 105		
Table 135: Meaning of the data byte	Value	Meaning
A If object CAM Polarity register (6B02hex) = 01hex, an inversion will be carried out		The actual SSI encoder value is outside of the range defined by CAM1 Low limit and CAM1 High limit or the comparison function is not activated
	01 _{hex} (00 _{hex}) A	The actual SSI encoder value is outside of the range defined by CAM1 Low limit and CAM1 High limit or the comparison function is not activated

Object 6B01_{hex} - CAM Enable Register

The object CAM Enable register defines if the SSI encoder value is to be compared with the values CAM1 Low limit and CAM1 High limit (object 6B10_{hex} and 6B20hex).

Table 136: Objects 6B01 _{hex}	Feature	Description
	Name	CAM Enable register
	Object code	ARRAY
	Data type	Unsigned8
	Access	rw
	Default value	No
	PDO-mapping	No
Table 137: Meaning of the data byte	Value	Meaning
	00 _{hex}	The SSI encoder value is not compared with the values CAM1 Low limit and CAM1 High limit (object 6B10 _{hex} and 6B20hex).
	01 _{hex}	The SSI encoder value is compared with the values CAM1 Low limit and CAM1 High limit (object 6B10 _{hex} and 6B20hex).

Object 6B02_{hex} – CAM Polarity Register

The object CAM Polarity register can cause an inversion of the values represented with object 6B00hex.

Table 138: Objects 6B02 _{hex}	Feature	Description
	Name	CAM polarity register
	Object code	ARRAY
	Data type	Unsigned8
	Access	rw
	Default value	No
	PDO-mapping	No
Table 139: Meaning of the data byte	Value	Meaning
	00 _{hex}	The value represented with object 6B00 _{hex} is not inverted.
	01 _{hex}	The value represented with object $6B00_{\text{hex}}$ is inverted.

Object 6B10_{hex} – CAM1 Low Limit

The object CAM1 Low limit defines in accordance with DS406 a lower limit of the counter range.

Object CAM1 Low limit matches the comparison value 2 of the BL67-1SSI module.

Table 140: Objects 6B10 _{hex}	Feature	Description	
	Name	CAM1 Low limit	
	Object code	ARRAY	
	Data type	Integer32	
	Access	rw	
	Default value	No	
_	PDO-mapping	No	

Object 6B20_{hex} – CAM1 High Limit

The object CAM1 High limit defines in accordance with DS406 an upper limit of the counter range.

Object CAM1 High limit matches the comparison value 1 of the BL67-1SSI module.

Table 141: Objects 6B20 _{hex}	Feature	Description	
	Name	CAM1 High limit	
	Object code	ARRAY	
	Data type	Integer32	
	Access	rw	
	Default value	No	
_	PDO-mapping	No	
5 Diagnostics - Emergency Frames

General	
Structure of the Emergency Frames	3
Error Register	4
- Additional information	
Gateway-Diagnostics	5
I/O-Module Diagnostics	
Digital Input Modules	8
Digital Output Modules	
Digital Combi Modules	11
Analog Output Modules	
Technology Modules	18

General

The gateway sends out the following diagnostic information: the state of the BL67 station, the communication through the internal modules bus, the communication with CANopen, the state of the gateway itself.

Diagnostics messages are indicated in two different ways:

- through the individual LEDs
- through Emergency Frames in a CANopen configuration tool (software)

Structure of the Emergency Frames

BL67 CANopen supports Emergency Frames (EMCY) as standardized in CiA DS-301.

The COB-IDs for the EMCY telegrams are defined by the Predefined Master-Slave Connection Set:

COB-ID = 129 - 1 + Node-ID

In the event of a communication error, not only the Emergency Error Code but also the Error register (see "Object 1001_{hex}") and additional information will be transmitted, so that the error can be more precisely identified. Only a portion of the 5 bytes is used for the additional information. The remaining bytes are then 0.

Byte	0	1	2	3	4	5	6	7
Data contents	Emerger Code (Ta	ncy Error able 144:)	Error register (Table 142:)		y valid	ional in for Erro (Table ⁻	or Code	on 8100h-

Error Register

Bi foi	ble 142: t assignments r the error gister	Error register	М/О	Meaning
	M = mandatory	Bit 0	Μ Α	Generate the error message
B <i>O</i> = optional	Bit 1	0 в	Current error	
		Bit 2	0	Voltage error
		Bit 3	0	Temperature error
		Bit 4	0	Communication error (overrun, error state)
		Bit 5	0	Device-profile-specific error
		Bit 6	0	reserved
		Bit 7	0	Manufacturer-specific error

Additional information

Table 143: Content of Byte 3 to 7 of Emergency Frame	Content	Meaning
	01 _{hex}	Guard Fail
	02 _{hex}	Warning Level Reached
	03 _{hex}	Transmit-Time-Out
	04 _{hex}	Bus-off

Gateway-Diagnostics

Table 144: Diagnostics for the BL67- CANopen gateway	Diagnostics	Error Code	Designation as per CiA DS-301/DS- 401	Meaning
	Error Reset/ No Error	0000 _{hex}	-	Error Reset
	Mains voltage too high	3110 _{hex}		System voltage too high
	Mains voltage too low	3120 _{hex}	Mains voltage too low	System voltage too low
	Field voltage too low	3320 _{hex}	Output voltage too low	Field voltage too low
	RS232/RS4xx- error	7000 _{hex}	Additional modules	Error of a RS232/ RS4xx-module
	Deviating I/O- configuration	707A _{hex}	Additional modules	l/O module list, adaptable change, e.g. module removed
	I/O-configuration error	707D _{hex}	Additional modules	I/O module list, incompatible change
	Deviating I/O- configuration – module expansion	707E _{hex}	Additional modules	I/O module list extended
	Deviating I/O- configuration – module removed	707F _{hex}	Additional modules	1 module removed from I/O module list

Table 144: Diagnostics for the BL67- CANopen gateway	Diagnostics	Error Code	Designation as per CiA DS-301/DS- 401	Meaning
	CAN-Warning- Level reached	8100 _{hex}	Communication	CAN communica- tion faulty (at least one of the error counters for the CAN controller of the BL67-CANopen gateway has reached the value 96)
	CAN Transmit Timeout	8100 _{hex}	Communication	The BL67- CANopen gateway was not able to transmit a frame within the specified time.
	Life-Guard Error or Heartbeat Error	8130 _{hex}	Life-Guard error or Heartbeat error	The BL67- CANopen gateway has detected an error in the CANopen Guarding or Heartbeat Protocol, e.g. a time-out.
	Left CAN-BusOff	8140 _{hex}	Recovered from Bus-Off	The system has left the CAN-Bus Off state, i.e. the CAN controller for the BL67-CANopen gateway has moved out of this serious fault condition.

Table 144: Diagnostics for the BL67- CANopen gateway	Diagnostics	Error Code	Designation as per CiA DS-301/DS- 401	Meaning
	I/O-Assistant Force Mode active	9009 _{hex}	External Error	Force Mode is active, i.e. the outputs of the BL67 station are not under the control of CANopen at the moment.

I/O-Module Diagnostics

Digital Input Modules

The digital input modules BL67-4DI-PD and BL67-8DI-PD with diagnosis function have supplementary diagnostics which can not be send via detailed error codes.

In case of an error occurring at one of these modules, the gateway sends an error frame specifying the module- and channel-number of the respective module as well as a common error classification.

Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

If necessary, detailed information about the diagnostic message, can be read from a manufacturer specific object, the object 3042_{hex} "XBI Diag Word".

Note

Objects 3000_{hex} to 3097_{hex} enable direct access to the internal module bus of the BL67 station.

This object reads the first diagnosis word (byte 0 and byte 1) of a BL67 module within the station.

Attention

The sub-index corresponds to the slot number of the respective module in a station.

Table 145: Object 3042 _{hex}	Feature	Description/ Value
	Name	XBI Diag Word
	Object code	ARRAY
	Data Type	Unsigned16
	Access	ro
	Default value	No
	PDO-mapping	No

The structure of the 2 bytes of diagnostic data depends on the module concerned.

BL67-4DI-PD

Diagnosis byte	Bit	Diagnosis
0	0	overcurrent sensor 1 (sensor supply A)
	1	overcurrent sensor 2 (sensor supply B)
	2	overcurrent sensor 3 (sensor supply C)
	3	overcurrent sensor 4 (sensor supply D)
1	0	open circuit K1 (channel 0 and 2)
	1	open circuit K2 (channel 1 and 3)
	byte	byte 0 0 1 2 3

Diagnostics - Emergency Frames

BL67-8DI-PD

Table 147: Diagnostic Bytes for BL67-8DI-PD	Diagnosis byte	Bit	Diagnosis
	n	0	overcurrent sensor 1 (sensor supply A)
		1	overcurrent sensor 2 (sensor supply B)
		2	overcurrent sensor 3 (sensor supply C)
		3	overcurrent sensor 4 (sensor supply D)
	n + 1	0	open circuit K1(channel 0 and 4)
		1	open circuit K2 (channel 1 and 5)
		2	open circuit K3 (channel 2 and 6)
		3	open circuit K4 (channel 3 and 7)

Digital Output Modules

Table 148: Diagnostics for the BL67 digital output modules	Error Code	Diagnostics	
	2310 _{hex}	Output current too high	
	2330 _{hex}	Load dump at outputs: Open circuit or current too low.	

Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

Digital Combi Modules

The digital combi modules BL67-4DI4DO-PD and BL67-8XSG-PD have supplementary diagnostics which can not be send via detailed error codes.

The following standard error codes for digital output modules can be send.

Table 149: Standard diag- nostics for the BL67 digital combi modules	Error Code	Diagnostics
	2310 _{hex}	Output current too high
	2330 _{hex}	Load dump at outputs: Open circuit or current too low.

In addition to that, the gateway sends a error frame specifying the module- and channel-number of the respective module as well as a common error classification.

Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

If necessary, detailed information about the diagnostic message, can be read from a manufacturer specific object, the object 3042_{hex} "XBI Diag Word".

Note

Objects 3000_{hex} to 3097_{hex} enable direct access to the internal module bus of the BL67 station.

This object reads the first diagnosis word (byte 0 and byte 1) of a BL67 module within the station.

Attention

The sub-index corresponds to the slot number of the respective module in a station.

Table 150: Object 3042 _{hex}	Feature	Description/ Value
	Name	XBI Diag Word
	Object code	ARRAY
	Data Type	Unsigned16
	Access	ro
	Default value	No
_	PDO-mapping	No

The structure of the 2 bytes of diagnostic data depends on the module concerned.

BL67-4DI4DO-PD

Table 151: Diagnostic Bytes for BL67-4DI4DO-PD	Diagnosis byte	Bit	Diagnosis
	0	0	overcurrent sensor 1 (sensor supply A)
		1	overcurrent sensor 2 (sensor supply B)
		2	overcurrent sensor 3 (sensor supply C)
		3	overcurrent sensor 4 (sensor supply D)
	1	0	overcurrent K1
		1	overcurrent K2
		2	overcurrent K3
		3	overcurrent K4

BL67-8XSG-PD

Table 152: Diagnostic Bytes for BL67-8XSG-PD	Diagnosis byte	Bit	Diagnosis
	0	0	overcurrent sensor 1 (sensor supply A)
		1	overcurrent sensor 2 (sensor supply B)
		2	overcurrent sensor 3 (sensor supply C)
		3	overcurrent sensor 4 (sensor supply D)
	1	0	overcurrent K1
		1	overcurrent K2
		2	overcurrent K3
		3	overcurrent K4
		4	overcurrent K5
		5	overcurrent K6
		6	overcurrent K7
		7	overcurrent K8

Analog Output Modules

BL67-2AI-I

Table 153: Diagnostics for the BL67-2Al-I	Error Code	Diagnostics
A threshold: 1% of the positive measurement range end value	2110 _{hex}	Input current too high: The input current is outside of the permissible range. A
	2130 _{hex}	Input current too low: Open circuit or input current (for the measuring range 4 to 20 mA) too low. The threshold is 3 mA.

Note

1

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

BL67-2AI-U

Table 154: Diagnostics for the BL67-2AI-U	Error Code	Diagnostics
	3003 _{hex}	AI U voltage out of range: The input voltage is outside of the permissible range.

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

BL67-2AI-PT

Table 155: Diagnostics for the BL67-2AI-PT	Error Code	Diagnostics
A threshold: 1% of the positive measurement range end value	2323 _{hex}	Output current out of range: The current is outside of the permissible range A
	2330 _{hex}	Load dump at outputs: Open circuit or current too low (threshold: posi- tive converter limit value)
	2310 _{hex}	Output current too high: Current too high (threshold: approx. 5 Ω ; only with temperature measuring ranges)

Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

BL67-2AI-TC

Table 156: Diagnostics for the BL67-2AI-TC	Error Code	Diagnostics
	3003 _{hex}	AI U voltage out of range: The input voltage is outside of the permissible range.
1	Note	wto accignment of the Emergency frame, please see

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

BL67-4AI-U/I

Table 157: Diagnostics for the BL67-4AI-U/I	Error Code	Diagnostics
A threshold: 1% of the positive measurement range end value	2110 _{hex}	Input current too high: The input current is outside of the permissible range. ${f A}$
lica		Input current too low: Open circuit or input current (for the measuring range 4 to 20 mA) too low. The threshold is 3 mA.
	3003 _{hex}	AI U voltage out of range: The input voltage is outside of the permissible range.

1 Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

Technology Modules

BL67-1RS232/ BL67-1RS4××

Byte 0	Byte 3	Byte 4	Byte 5	Meaning
+ Byte 1:				

Error Code

7000 _{hex} Modu numb	Module	Channel	08 _{hex}	Parameter error
	number	(always = 1)	10 _{hex}	Hardware failure
			20 _{hex}	Handshake error
			30 _{hex}	Frame error
			40 _{hex}	RX buffer overflow

1 Note

For the exact byte assignment of the Emergency frame, please see "Structure of the Emergency Frames", Page 5-3.

BL67-1SSI

Byte 0 + Byte 1:	Byte 3	Byte 4	Byte 5	Meaning
Error Code				
7000 _{hex}	Module	Channel	01 _{hex}	SSI diag
	number	number (always = 1)	02 _{hex}	SSI error
			04 _{hex}	Overflow error

08_{hex}

10_{hex}

Underflow error

Parameter error

5

Diagnostics - Emergency Frames

6 Guidelines for Station Planning

Module Arrangement	2
Random Module Arrangement	
Complete Planning	
Maximum System Extension	4
Creating Potential Groups	.5
Plugging and Pulling Electronic Modules	6
Extending an Existing Station	7
Firmware Download	8

Module Arrangement

Random Module Arrangement

The arrangement of the I/O modules within a BL67 station can basically be chosen at will.

Nevertheless, it can be useful with some applications to group certain modules together.

Complete Planning

The planning of a BL67 station should be thorough to avoid faults and increase operating reliability.

Attention

If there are more than two empty slots next to one another, the communication is interrupted to all following BL67 modules.

Maximum System Extension

A BL67 station can consist of a gateway and a maximum of 32 modules (equivalent to 1 m station length).

The following overview shows the maximum number of channels possible under these conditions:

• The entire station is made up of the respective channel type only.

Table 158:	Module type	maximum number	
Maximum system extension		Channels	Modules
A limited due to the high current consumption on the module bus (5 V)	BL67-4DI-P	128	32
	BL67-8DI-P	256	32
	BL67-4DO-xA-P	128	32
	BL67-8DO-0.5A-P	256	32
	BL67-2AI-I	64	32
	BL67-2AI-V	64	32
	BL67-2AI-PT	64	32
	BL67-2AI-TC	64	32
	BL67-2AO-I	64	32
	BL67-2AO-V	50 A	25 A
	BL67-1RS232	15 A	15 A
	BL67-1RS485/422	22	22
	BL67-1SSI	22	22

Attention

Ensure that a sufficient number of Power Feeding modules are used if the system is extended to its maximum.

Note

If the system limits are exceeded, the software I/O-ASSISTANT generates an error message when the user activates the command σ (Station \rightarrow Verify).

Creating Potential Groups

Power Feeding modules can be used to create potential groups. The potential isolation of potential groups to the left of the respective power distribution modules is provided by the base modules.

Plugging and Pulling Electronic Modules

BL67 enables the pulling and plugging of electronic modules without having to disconnect the field wiring. The BL67 station remains in operation if an electronic module is pulled. The voltage and current supplies as well as the protective earth connections are not interrupted.

Attention

If the field and system supplies remain connected when electronic modules are plugged or pulled, short interruptions to the module bus communications can occur in the BL67 station. This can lead to undefined statuses of individual inputs and outputs of different modules.

Extending an Existing Station

Attention

Please note that extensions to the station (mounting further modules) should be carried out only when the station is in a voltage-free state.

Firmware Download

Firmware can be downloaded via the service interface on the gateway using the software tool I/O-ASSISTANT. More information is available in the program's online help.

Attention

The station should be disconnected from the fieldbus when down-loading.

Firmware must be downloaded by authorized personnel only.

The field level must be isolated.

7 Guidelines for Electrical Installation

General Notes	
General Cable Routing Cable Routing Inside and Outside of Cabinets: – Cable Routing Outside Buildings Lightning Protection	2 2 3
Transmission Cables	3
Cable Types	4
Potential Relationships	5
General	5
Electromagnetic Compatibility (EMC)	6
Ensuring Electromagnetic Compatibility Grounding of Inactive Metal Components PE Connection Earth-Free Operation Mounting Rails	6 6 7 7
Ensuring Electromagnetic Compatibility Grounding of Inactive Metal Components PE Connection Earth-Free Operation	6 6 7 7 7
Ensuring Electromagnetic Compatibility Grounding of Inactive Metal Components PE Connection Earth-Free Operation Mounting Rails	

General Notes

General

Cables should be grouped together, for example: signal cables, data cables, heavy current cables, power supply cables.

Heavy current cables and signal or data cables should always be routed in separate cable ducts or bundles. Signal and data cables must always be routed as close as possible to ground potential surfaces (for example support bars, cabinet sides etc.).

Cable Routing

Correct cable routing prevents or suppresses the reciprocal influencing of parallel routed cables.

Cable Routing Inside and Outside of Cabinets:

To ensure EMC-compatible cable routing, the cables should be grouped as follows:

Various types of cables within the groups can be routed together in bundles or in cable ducts.

Group 1:

- shielded bus and data cables
- shielded analog cables
- unshielded cables for DC voltage ≤ 60 V
- unshielded cables for AC voltage ≤ 25 V

Group 2:

- unshielded cables for DC voltage > 60 V and ≤ 400 V
- unshielded cables for AC voltage > 25 V and ≤ 400 V

Group 3:

unshielded cables for DC and AC voltages > 400 V

The following group combination can be routed only in separate bundles or separate cable ducts (no minimum distance apart):

Group 1/Group 2

The group combinations:

Group 1/Group 3 and Group 2/Group 3

must be routed in separate cable ducts with a minimum distance of 10 cm apart. This is equally valid for inside buildings as well as for inside and outside of switchgear cabinets.

Cable Routing Outside Buildings

Outside of buildings, cables should be routed in closed (where possible), cage-type cable ducts made of metal. The cable duct joints must be electrically connected and the cable ducts must be earthed.

Warning

Observe all valid guidelines concerning internal and external lightning protection and grounding specifications when routing cables outside of buildings.

Lightning Protection

The cables must be routed in double-grounded metal piping or in reinforced concrete cable ducts.

Signal cables must be protected against overvoltage by varistors or inert-gas filled overvoltage arrestors. Varistors and overvoltage arrestors must be installed at the point where the cables enter the building.

Transmission Cables

The slaves on the bus are connected to one another with fieldbus lines that correspond to the DeviceNet specification (ODVA Spec. Rel. V2.0).

The bus cables must be terminated at the beginning and end with a bus terminating resistor. This can be connected via the number 4 DIP switch on the gateway.

Cable Types

TURCK offers a variety of premoulded bus cables - please refer to the BL67-catalog (TURCK documentation number: D300575).

Potential Relationships

General

The potential relationship of a CANopen system realized with BL67 modules is characterized by the following:

- The system supply of gateway and I/O modules as well as the field supply are realized via one power feed at the gateway.
- All BL67 modules (gateway, Power Feeding and I/O modules), are connected capacitively via base modules to the mounting rails.

The block diagram shows the arrangement of a typical BL67 station.

Electromagnetic Compatibility (EMC)

BL67 products comply in full with the requirements pertaining to EMC regulations.

Nevertheless, an EMC plan should be made before installation. Hereby, all potential electromechanical sources of interference should be considered such as galvanic, inductive and capacitive couplings as well as radiation couplings.

Ensuring Electromagnetic Compatibility

The EMC of BL67 modules is guaranteed when the following basic rules are adhered to:

- Correct and large surface grounding of inactive metal components.
- Correct shielding of cables and devices.
- Proper cable routing correct wiring.
- Creation of a standard reference potential and grounding of all electrically operated devices.
- Special EMC measures for special applications.

Grounding of Inactive Metal Components

All inactive metal components (for example: switchgear cabinets, switchgear cabinet doors, supporting bars, mounting plates, tophat rails, etc.) must be connected to one another over a large surface area and with a low impedance (grounding). This guarantees a standardized reference potential area for all control elements and reduces the influence of coupled disturbances.

- In the areas of screw connections, the painted, anodized or isolated metal components must be freed of the isolating layer. Protect the points of contact against rust.
- Connect all free moving groundable components (cabinet doors, separate mounting plates, etc.) by using short bonding straps to large surface areas.

Avoid the use of aluminum components, as its quick oxidizing properties make it unsuitable for grounding.

Warning

The grounding must never – including cases of error – take on a dangerous touch potential. For this reason, always protect the ground potential with a protective cable.

PE Connection

A central connection must be established between ground and PE connection (protective earth).

Earth-Free Operation

Observe all relevant safety regulations when operating an earthfree system.

Mounting Rails

All mounting rails must be mounted onto the mounting plate with a low impedance, over a large surface area, and must be correctly earthed.

TURCK

Mount the mounting rails over a large surface area and with a low impedance to the support system using screws or rivets.

Remove the isolating layer from all painted, anodized or isolated metal components at the connection point. Protect the connection point against corrosion (for example with grease; caution: use only suitable grease).

Shielding of cables

Shielding is used to prevent interference from voltages and the radiation of interference fields by cables. Therefore, use only shielded cables with shielding braids made from good conducting materials (copper or aluminum) with a minimum degree of coverage of 80 %.

The cable shield should always be connected to both sides of the respective reference potential (if no exception is made, for example, such as high-resistant, symmetrical, analog signal cables). Only then can the cable shield attain the best results possible against electrical and magnetic fields.

A one-sided shield connection merely achieves an isolation against electrical fields.

Attention

When installing, please pay attention to the following...

- the shield should be connected immediately when entering the
- system,
- the shield connection to the shield rail should be of low
- impedance,
- the stripped cable-ends are to be kept as short as possible,
- the cable shield is not to be used as a bonding conductor.

If the data cable is connected via a SUB-D connector, the shielding should never be connected via pin 1, but to the mass collar of the plug-in connector.

The insulation of the shielded data-cable should be stripped and connected to the shield rail when the system is not in operation. The connection and securing of the shield should be made using metal shield clamps. The shield clamps must enclose the shielding braid and in so doing create a large surface contact area. The shield rail must have a low impedance (for example, fixing points of 10 to 20 cm apart) and be connected to a reference potential area.

The cable shield should not be severed, but routed further within the system (for example, to the switchgear cabinet), right up to the interface connection.

Note

Should it not be possible to ground the shield on both sides due to switching arrangements or device specific reasons, then it is possible to route the second cable shield side to the local reference potential via a capacitor (short connection distances). If necessary, a varistor or resistor can be connected parallel to the capacitor, to prevent disruptive discharges when interference pulses occur.

A further possibility is a double-shielded cable (galvanically separated), whereby the innermost shield is connected on one side and the outermost shield is connected on both sides.

Potential Compensation

Potential differences can occur between installation components that are in separate areas and these

- are fed by different supplies,
- have double-sided conductor shields which are grounded on different installation components.

A potential-compensation cable must be routed to the potential compensation.

Warning

Never use the shield as a potential compensation.

Connection 1		Connection 2
CAN_H	0 0	CAN_H
CAN_L	0 0	CAN_L
GND (optional)	0 0	GND (optional)

A potential compensation cable must have the following characteristics:

- Low impedance. In the case of compensation cables that are routed on both sides, the compensation line impedance must be considerably smaller than that of the shield connection (max. 10 % of shield connection impedance).
- Should the length of the compensation cable be less than 200 m, then its cross-section must be at least 16 mm² / 0.025 inch². If the cable length is greater than 200 m, then a cross-section of at least 25 mm² / 0.039 inch² is required.
- The compensation cable must be made of copper or zinc coated steel.
- The compensation cable must be connected to the protective conductor over a large surface area and must be protected against corrosion.
- Compensation cables and data cables should be routed as close together as possible, meaning the enclosed area should be kept as small as possible.

Switching Inductive Loads

In the case of inductive loads, a protective circuit on the load is recommended.

Protection against Electrostatic Discharge (ESD)

Attention

Electronic modules and base modules are at risk from electrostatic discharge when disassembled. Avoid touching the bus connections with bare fingers as this can lead to ESD damage.

8 Glossary

Α

Acknowledge

Acknowledgment of a signal received.

Active metal component

Conductor or conducting component that is electrically live during operation.

Address

Identifier of, e.g. a memory position, a system or a module within a network....

Addressing

Allocation or setting of an address, e. g. for a module in a network.

Analog

Infinitely variable value, e. g. voltage. The value of an analog signal can take on any value, within certain limits.

Attribute

Attributes represent the data that a device makes available via the DeviceNet fieldbus (e. g. status of an object, serial number of the device, process data).

Automation device

A device connected to a technical process with inputs and outputs for control. Programmable logic controllers (PLC) are a special group of automation devices.

В

Baud

Baud is a measure for the transmission speed of data. 1 Baud corresponds to the transmission of one bit per second (Bit/s).

Baud rate

Unit of measurement for data transmission speeds in Bit/s.

Bidirectional

Working in both directions.

Bit Strobe

A Bit Strobe I/O connection is a connection between a DeviceNet client and an undetermined number of servers, these being queried by commands sent by the client.

Bonding strap

Flexible conductor, normally braided, that joins inactive components, e.g. the door of a switchgear cabinet to the cabinet main body.

Bus

Bus system for data exchange, e. g. between CPU, memory and I/O levels. A bus can consist of several parallel cables for data transmission, addressing, control and power supply.

Bus cycle time

Time required for a master to serve all slaves or stations in a bus system, i. e. reading inputs and writing outputs.

Bus line

Smallest unit connected to a bus, consisting of a PLC, a coupling element for modules on the bus and a module.

Bus system

All units which communicate with one another via a bus.

С

Capacitive coupling

Electrical capacitive couplings occur between cables with different potentials. Typical sources of interference are, e. g. parallel-routed signal cables, contactors and electrostatic discharges.

Class

A group of Objects that all describe the same system components. All Objects of a Class are identical in form and behavior, they can though contain different attributes.

СОВ

Communication Object, which is made of one or more CAN frames. Any information transmitted via CANopen has to be mapped into COBs (Source: CiA DS 401 V2.1).

COB-ID

COB-Identifier. Identifies a COB uniquely in a CAN network. The identifier determines the priority of that COB in the data link layer, too (Source: CiA DS 401 V2.1).

Coding elements

Two-piece element for the unambiguous assignment of electronic and base modules.

Configuration

Systematic arrangement of the I/O modules of a station.

CPU

Central Processing Unit. Central unit for electronic data processing, the processing core of the PC.

Cyclic

Messages are triggered time-controlled in Cyclic I/O connections by means of a time generator.

D

Digital

A value (e. g. a voltage) which can adopt only certain statuses within a finite set, mostly defined as 0 and 1.

DIN

German acronym for German Industrial Standard.

E

EDS

Electronic Device Data Sheet which contains standardized DeviceNet station descriptions. They simplify the planning of the DeviceNet nodes.

EIA

Electronic Industries Association – association of electrical companies in the United States.

Electrical components

All objects that produce, convert, transmit, distribute or utilize electrical power (e. g. conductors, cable, machines, control devices).

8

Glossary

EMC

Electromagnetic compatibility – the ability of an electrical part to operate in a specific environment without fault and without exerting a negative influence on its environment.

EN

German acronym for European Standard.

ESD

Electrostatic Discharge.

Field power supply

Voltage supply for devices in the field as well as the signal voltage.

Fieldbus

Data network on sensor/actuator level. A fieldbus connects the equipment on the field level. Characteristics of a fieldbus are a high transmission security and real-time behavior.

Force Mode

Software mode which enables the user to set his plant to a required state by forcing certain variables on the input and output modules.

G

GND

Abbreviation of ground (potential "0").

Ground

Expression used in electrical engineering to describe an area whose electrical potential is equal to zero at any given point. In neutral grounding devices, the potential is not necessarily zero, and one speaks of the ground reference.

Ground connection

One or more components that have a good and direct contact to earth.

Ground reference

Potential of ground in a neutral grounding device. Unlike earth whose potential is always zero, it may have a potential other than zero.

Hexadecimal

System of representing numbers in base 16 with the digits 0... 9, and further with the letters A, B, C, D, E and F.

Hysteresis

A sensor can get caught up at a certain point, and then "waver" at this position. This condition results in the counter content fluctuating around a given value. Should a reference value be within this fluctuating range, then the relevant output would be turned on and off in rhythm with the fluctuating signal.

1

1/0

Input/output.

Impedance

Total effective resistance that a component or circuit has for an alternating current at a specific frequency.

Inactive metal components

Conductive components that cannot be touched and are electrically isolated from active metal components by insulation, but can adopt voltage in the event of a fault.

Inductive coupling

Magnetic inductive couplings occur between two cables through which an electrical current is flowing. The magnetic effect caused by the electrical currents induces an interference voltage. Typical sources of interference are for example, transformers, motors, parallel-routed network and HF signal cables.

Instance

An Instance is defined as being an Object that is actually set up in a device.

L

Load value

Predefined value for the counter module with which the count process begins.

Lightning protection

All measures taken to protect a system from damage due to overvoltages caused by lightning strike.

Low impedance connection

Connection with a low AC impedance.

LSB

Least Significant Bit

M Mass

All interconnected inactive components that do not take on a dangerous touch potential in the case of a fault.

Module bus

The module bus is the internal bus in a BL67 station. The BL67 modules communicate with the gateway via the module bus which is independent of the fieldbus.

MSB

Most Significant Bit

M NMT

see Chapter 2 "Short description of CANopen", Page 2-3.

C	۰.	
L	,	

Overhead

System administration time required by the system for each transmission cycle.

PDO

see Chapter 2 "Short description of CANopen", Page 2-4.

PLC

Programmable Logic Controller.

Polling

Establish a Polled I/O Connection, i. e. a conventional Master/Slave relationship between a controller and a DeviceNet device.

Potential compensation

The alignment of electrical levels of electrical components and external conductive components by means of an electrical connection.

Potential free

Galvanic isolation of the reference potentials in I/O modules of the control and load circuits.

Potential linked

Electrical connection of the reference potentials in I/O modules of the control and load circuits.

Protective earth

Electrical conductor for protection against dangerous shock currents. Generally represented by PE (protective earth).

R

Radiation coupling

A radiation coupling appears when an electromagnetic wave hits a conductive structure. Voltages and currents are induced by the collision. Typical sources of interference are e. g. sparking gaps (spark plugs, commutators from electric motors) and transmitters (e. g., radio), that are operated near to conducting structures.

Reaction time

The time required in a bus system between a reading operation being sent and the receipt of an answer. It is the time required by an input module to change a signal at its input until the signal is sent to the bus system.

S

SDO

see Chapter 2 "Short description of CANopen", Page 2-4.

Glossary

9 Index

A

addressing 3-2

В

base modules	1-6
BL67 gateway	
- function	3-3
Boot-up message 4	-14

С

cable types	7-4
CANopen	2-1
- Boot-up message	2-4
- Communication	2-3
– EDS file	2-8
- Emergency object (Emcy)	2-6
- General	2-2
 Network management 	
messages	2-3
- Process data objects (PDOs)	2-4
- Service data objects (SDOs)	2-4
- Special function objects	2-6
- Synchronization object	2-6
- Time stamp object (Time)	2-6
COB-ID	4-9
connection options	3-10
current consumption	8-2

D

Default Mappings	4-25
Default-PDOs	4-27
diagnostic messages	3-18
Diagnostics	
- I/O-modules	. 5-8
diagnostics	. 5-1

Е

earth-free operation7	'-7
electromagnetic compatibility 7	'-6
electronic modules 1	-5
electrostatic discharge7-	12

EMC	7-6
Emergency Frames	5-2
empty slot	6-3
end plate	1-7
error code	5-3
error register	5-3, 5-4
ESD, electrostatic discharge	7-12
Event Timer	4-23

F

fieldbus connection	
firmware download	
flexibility	1-3

G

gateway function	
gateways	

I

Identifier	4-9
inductive loads, protective circuit 7-	-12
Inhibit Time4	-23

L

LEDs	
------	--

М

Mappable objects	4-31
Mapping objects	4-24
Minimum Boot-up	4-5
module arrangement	6-2
Module list	3-17
mounting rail	7-7

Ν

Node Guarding	. 4-12
Node Guarding Protocol	. 4-12
Node-ID	4-9
Node-ID setting	. 3-15

0

Object Dictionary	4-34
Objects	
– I/Os4-109), 4-112

Ρ

parameter assignment Parameterization PDOs	
	4 07
– BL67 specific	4-27
PE connection	7-7
planning	6-3
plugging, electronic modules	6-6
potential groups	6-5
potential relationships	7-5
potential-compensation cable	7-11
power distribution modules	1-5
power supply	3-11
Process Data Objects (PDO) 2-4,	4-21
protection class IP67	1-7
pulling, electronic modules	6-6

R

RPDOs	
- BL67 specific	4-28

S

Service Data Objects (SDO)	4-15
service interface	3-12
set button	3-17
shielding	7-9
status displays	3-2
status indicators	3-17
status messages	
- SSI encoder	4-191
supply voltage	3-7
system extension	6-7
system extension, maximum	6-4

т

transfer rate	3-13
transmission cables	7-3
Transmission Type	4-22

Industri<mark>al</mark> Au<mark>tomation</mark>

TURCK WORLD-WIDE HEADQUARTERS

GERMANY

Hans Turck GmbH & Co. KG Witzlebenstraße 7 D-45472 Mülheim an der Ruhr P. O. Box 45466 Mülheim an der Ruhr Phone (+49) (208) 4952-0 Fax (+49) (208) 4952-2 64 E-Mail more@turck.com

www.turck.com

D301006 0806

Subject to change without notice